Answer and Step-by-step explanation:
If the radius is 5, then we can plug 5 into the area of a circle equation.
A = 
A = 
A = 25
<u>The area of a circle with radius 5 is 25</u>
<u>.</u>
<em><u>#teamtrees #PAW (Plant And Water)</u></em>
12x=x^2-64
you have to do quadratic formula
Answer:
g(x)=f(x+3)+5
Step-by-step explanation:
Option C:
![$\frac{\sqrt[3]{100 x}}{5}=\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
Solution:
Given expression is
![$\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
Note: ![\sqrt[3]{125}=\sqrt[3]{{5^3}} = 5](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B125%7D%3D%5Csqrt%5B3%5D%7B%7B5%5E3%7D%7D%20%20%3D%205)
To find the correct expression for the above simplified expression.
Option A: ![\frac{\sqrt[3]{4 x}}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B4%20x%7D%7D%7B5%7D)
5 can be written as
.
![$\frac{\sqrt[3]{4 x}}{5}=\frac{\sqrt[3]{4 x}}{\sqrt[3]{125} }](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B4%20x%7D%7D%7B5%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B4%20x%7D%7D%7B%5Csqrt%5B3%5D%7B125%7D%20%7D)
![$=\sqrt[3]{\frac{4x}{125} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4x%7D%7B125%7D%20%7D)
It is not the given simplified expression.
Option B: ![\frac{\sqrt[3]{20 x}}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B20%20x%7D%7D%7B5%7D)
![$\frac{\sqrt[3]{20 x}}{5}=\frac{\sqrt[3]{20 x}}{\sqrt[3]{125} }](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B20%20x%7D%7D%7B5%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B20%20x%7D%7D%7B%5Csqrt%5B3%5D%7B125%7D%20%7D)
![$=\sqrt[3]{\frac{20x}{125} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B20x%7D%7B125%7D%20%7D)
Cancel the common factor in both numerator and denominator.
![$=\sqrt[3]{\frac{4x}{25} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4x%7D%7B25%7D%20%7D)
It is not the given simplified expression.
Option C: ![\frac{\sqrt[3]{100 x}}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D)
![$\frac{\sqrt[3]{100 x}}{5}=\frac{\sqrt[3]{100 x}}{\sqrt[3]{125} }](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B%5Csqrt%5B3%5D%7B125%7D%20%7D)
![$=\sqrt[3]{\frac{100x}{125} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B100x%7D%7B125%7D%20%7D)
Cancel the common factor in both numerator and denominator.
![$=\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
It is the given simplified expression.
Option D: ![\frac{\sqrt[3]{100 x}}{125}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B125%7D)
![$\frac{\sqrt[3]{100 x}}{125}=\frac{\sqrt[3]{100 x}}{5^3}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B125%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%5E3%7D)
It is not the given simplified expression.
Hence Option C is the correct answer.
![$\frac{\sqrt[3]{100 x}}{5}=\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
Answer:
800
Step-by-step explanation:
Look at the tens if it's 0-4 keep the number the same if 5-9 go up one number