1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Xelga [282]
3 years ago
13

A long straight wire has fixed negative charge with a linear charge density of magnitude 4.6 nC/m. The wire is to be enclosed by

a coaxial, thin-walled, nonconducting cylindrical shell of radius 2.2 cm. The shell is to have positive charge on its outside surface with a surface charge density σ that makes the net external electric field is zero. Calculate σ.
Physics
1 answer:
Semmy [17]3 years ago
7 0

Answer: -33.3 * 10^9 C/m^2( nC/m^2)

Explanation: In order to solve this problem we have to use the gaussian law, the we have:

Eoutside =0 so teh Q inside==

the Q inside= 4.6 nC/m*L + σ *2*π*b*L where L is the large of the Gaussian surface and b the radius of the shell.

Then we simplify and get

σ= -4.6/(2*π*b)= -33.3 nC/m^2

You might be interested in
Astronomers have no theoretical explanation for the ""hot Jupiters"" observed orbiting some other stars. (T/F)
-BARSIC- [3]

Answer:

Astronomers have no theoretical explanation for the ""hot Jupiters"" observed orbiting some other stars.

False

Explanation:

The “hot Jupiters” joint word startes to be used to be able to describe planets like 51 Pegasi b, a planet with a 10-day-or-less orbit and a mass 25% or greater than Jupitere, circling a sun-like star planet in 1995, which was found by astronomers Michel Mayor and Didier Queloz, who were awarded the 2019 Nobel Prize for Physics along with the cosmologist James Peebles for their “contributions to our understanding of the evolution of the universe and Earth’s place in the cosmos.”

Now  we know a total of 4,000-plus exoplanets, but only a few more than 400 meet the definition of the enigmatic hot Jupiters which, tell us a lot about how planetary systems form, and what kinds of conditions cause extreme results.

In a 2018 paper in the Annual Review of Astronomy and Astrophysics, astronomers Rebekah Dawson of the Pennsylvania State University and John Asher Johnson of Harvard University reviewed on how hot Jupiters might have formed, and would be the meaning for the rest of the planets in the galaxy.

4 0
3 years ago
Please Help Quick ASAP Hurry This is Physical Science
krok68 [10]

Answer:

Think it is C

Explanation:

Not sure!!!

6 0
3 years ago
Arrow_forward
garri49 [273]

Explanation:

(a) Hooke's law:

F = kx

7.50 N = k (0.0300 m)

k = 250 N/m

(b) Angular frequency:

ω = √(k/m)

ω = √((250 N/m) / (0.500 kg))

ω = 22.4 rad/s

Frequency:

f = ω / (2π)

f = 3.56 cycles/s

Period:

T = 1/f

T = 0.281 s

(c) EE = ½ kx²

EE = ½ (250 N/m) (0.0500 m)²

EE = 0.313 J

(d) A = 0.0500 m

(e) vmax = Aω

vmax = (0.0500 m) (22.4 rad/s)

vmax = 1.12 m/s

amax = Aω²

amax = (0.0500 m) (22.4 rad/s)²

amax = 25.0 m/s²

(f) x = A cos(ωt)

x = (0.0500 m) cos(22.4 rad/s × 0.500 s)

x = 0.00919 m

(g) v = dx/dt = -Aω sin(ωt)

v = -(0.0500 m) (22.4 rad/s) sin(22.4 rad/s × 0.500 s)

v = -1.10 m/s

a = dv/dt = -Aω² cos(ωt)

a = -(0.0500 m) (22.4 rad/s)² cos(22.4 rad/s × 0.500 s)

a = -4.59 m/s²

3 0
3 years ago
The valence of aluminum is +3, and the valence of chlorine is –1. The formula for aluminum chloride is correctly written as A. A
zzz [600]
The correct answer is D actually
7 0
4 years ago
A particularly beautiful note reaching your ear from a rare stradivarius violin has a wavelength of 39.1 cm. the room is slightl
raketka [301]
The wavelength of the note is \lambda = 39.1 cm = 0.391 m. Since the speed of the wave is the speed of sound, c=344 m/s, the frequency of the note is
f= \frac{c}{\lambda}=879.8 Hz

Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by
f= \frac{1}{2L} \sqrt{ \frac{T}{\mu} }
where \mu=0.550 g/m = 0.550 \cdot 10^{-3} kg/m is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
L= \frac{1}{2f}  \sqrt{ \frac{T}{\mu} } =0.31 m
8 0
3 years ago
Other questions:
  • A typical machine tests the tensile strength of a sheet of material cut into a standard size of 5.00 centimeters wide by 10.0 ce
    12·1 answer
  • A boy throws a rock with an initial velocity of 2.15 m/s at 30.0° above the horizontal. If air resistance is negligible, how lon
    10·1 answer
  • If v lies in the first quadrant and makes an angle Ï/3 with the positive x-axis and |v| = 4, find v in component form.
    5·1 answer
  • Which is not a device for reproducing sound? phonograph MP3 player gramophone microphone
    12·1 answer
  • Calculate the momentum pelephant of a 2140 kg elephant charging a hunter at a speed of 7.63 m/s . pelephant= kg⋅m/s Compare the
    13·1 answer
  • A single ion channel is selectively permeable to K+ and has a resistance of 1.0 GΩ. During an experiment the channel is open for
    12·1 answer
  • [OSS.04H]The diagram below shows a star map.
    5·1 answer
  • A 2.0 kg stone is tied to a 0.30 m string and swung around a circle at a constant angular velocity of 12.0 rad/s. The net torque
    8·1 answer
  • If two objects, like the eggs in the video, experience the same change in momentum but over time periods of
    9·1 answer
  • Part a a calorimeter consists of an aluminum cup inside of an insulated container. The cup is weighed on a top-loading balance a
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!