Answer:
2.083 V.
Explanation:
Stopping potential is the potential that is required to stop the current to zero . This potential is applied externally to oppose the potential created by the photoelectric effect . It gives the measure the photoelectric potential being generated .
Here current drops to 25 μA to 19 μA by a potential of 500mV
Change in current
= 25 - 19 = 6 μA
Voltage requirement for unit reduction in current
= 500 / 6 μA
To reduce current 0f 25 μA
requirement of V = (500 / 6 ) x 25 = 2083.33 mV = 2.083 V.
Answer:
1.45 K
I had the same question and i got it right.
Answer:
Explanation:
Distance between plates d = 2 x 10⁻³m
Potential diff applied = 5 x 10³ V
Electric field = Potential diff applied / d
= 5 x 10³ / 2 x 10⁻³
= 2.5 x 10⁶ V/m
This is less than breakdown strength for air 3.0×10⁶ V/m
b ) Let the plates be at a separation of d .so
5 x 10³ / d = 3.0×10⁶ ( break down voltage )
d = 5 x 10³ / 3.0×10⁶
= 1.67 x 10⁻³ m
= 1.67 mm.
because water is loosely packed but when it is cold it becomes closely packed in order to form ice and thus the force attraction between them also increase.
While riding in a hot air balloon,
which is steadily at a speed of 1.01 m/s, and your phone accidentally falls.
<span>(a)
</span>The
speed of your phone after 4 s is:
V= u +
at
V= 1.01
+ (9.8)(4)
V=
40.21 m/s
<span>(b)
</span>The balloon
is ____ far:
V = u +
at
V= 1.01
+ (9.8)(1)
V=10.81
–distance at 1 one second
V= u +
at
V= 1.01
+ (9.8)(2)
V= 20.61-distance
at 2 seconds
V= u+ at
V=
30.41- distance at 3 seconds
V=
40.21- distance at 4 seconds
D=
102.04 m
<span>(c)
</span>If the
balloon is rising steadily at 1.01 m/s:
V= -1.1
m/s
<span> </span>