It look like a storm is forming out into the ocean and building pressure and maybe become a hurricane.
I hope this helps :)!!!
Here is your answer:
First find the notations:
5.0×10^2=500.
1.0×10^3=1,000
Then you multiply:
1,000×500=500,000
Your answer is...
=500,000 or 5.0×10^4
Based on all we know about the terrestrial worlds, the single factor appears to play the most important role in a terrestrial planet's geological destiny is size size of terrestrial planet .
According to the question
Terrestrial Planets:
They belongs to a class of planets that are like the earth
Geological destiny :
Geology is biological destiny: Whatever minerals land or are deposited in a place determine what or who can make a living there millions of years later
Based on all we know about the terrestrial worlds, what single factor appears to play the most important role in a terrestrial planet's geological destiny
i.e
The size of terrestrial planet is one of the factors to play the most important role in a terrestrial planet's geological destiny
which determines how long the planet can retain internal heat, which drives geological activity because Smaller worlds cool off faster and harden earlier .
Hence, Based on all we know about the terrestrial worlds, the single factor appears to play the most important role in a terrestrial planet's geological destiny is size size of terrestrial planet .
To know more about terrestrial here:
brainly.com/question/13490379
#SPJ4
The correct answer to the question is : D) 352.6 m/s.
CALCULATION :
As per the question, the temperature is increased from 30 degree celsius to 36 degree celsius.
We are asked to calculate the velocity of sound at 36 degree celsius.
Velocity of sound is dependent on temperature. More is the temperature, more is velocity of sound.
The velocity at this temperature is calculated as -
V = 331 + 0.6T m/s
= 331 + 0.6 × 36 m/s
= 331 + 21.6 m/s
= 352.6 m/s.
Here, T denotes the temperature of the surrounding.
Hence, velocity of the sound will be 352.6 m/s.
Answer:
Because the light reflects multiple times until it gets to the Cassegrain focus.
Explanation:
The Cassegrain design can be seen in a reflecting telescope. In this type of design the light is collected by a concave mirror, and then intercepted by a secondary convex mirror, and sends it down to a central opening in the primary mirror (concave mirror), in which a detector is placed (Cassegrain focus)
Since, the light is reflected many times due to Cassegrain design, that leads to shorter telescopes.