Answer:
47.4 m
Explanation:
When an object is thrown upward, it rises up, it reaches its maximum height, and then it goes down. The time at which it reaches its maximum height is half the total time of flight.
In this case, the time of flight is 6.22 s, so the time the ball takes to reach the maximum height is

Now we consider only the downward motion of the ball: it is a free fall motion, so we can find the vertical displacement by using the suvat equation

where
s is the vertical displacement
u = 0 is the initial velocity
t = 3.11 s is the time
is the acceleration of gravity (taking downward as positive direction)
Solving the formula, we find

Run electrity through or is postive to the circuit
<span>So we want to know why is there a difference between the force of gravity on the Moon and the force of gravity of the Earth. So the gravitational force between two objects depends on the masses of both objects. That can be seen from Newtons universal law of gravity. F=G*m1*m2*(1/r^2). So lets say we are holding an object of mass m=1kg on a height r=1m on the Moon and we are holding the same object on the Earth also on the same height of r=1m. The Gravitational force on the Earth will be Fg=G*M*m*(r^2) where M is the mass of the Earth. The force between the moon and that object will be Fg=G*n*m*(r^2), where n is the mass of the moon. Since mass of the Moon is much smaller than mass of the Earth, The gravitational force between the Moon and that body will be almost 6 times smaller than the gravitational force between the Earth and that body. So the correct answer is B. </span>
Answer:2.517 J/K
Explanation:
Given
Reservoir 1 Temperature 
Reservoir 2 Temperature 
Let Q is the amount of heat Flows i.e. 
thus change in Entropy is given by 


