Answer:
Points downward, and its magnitude is 9.8 m/s^2
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform horizontal motion, with constant velocity and zero acceleration. In fact, there are no forces acting on the projectile along the horizontal direction (if we neglect air resistance), so the acceleration along this direction is zero.
- A vertical motion, with constant acceleration g = 9.8 m/s^2 towards the ground (downward), due to the presence of gravity wich "pulls" the projectile downward.
The total acceleration of the projectile is given by the resultant of the horizontal and vertical components of the acceleration. But we said that the horizontal component is zero, therefore the total acceleration corresponds just to its vertical component, therefore it is a vector with magnitude 9.8 m/s^2 which points downward.
me ajudem por favor pra agora de noite
The instantenous velocity is just the slope of the graph at a certain instant. Since the graph is a straight line, its instantenous velocity is uniform through out. v = dx / dt = (40 - 10) / (50 - 0) = 0.6 m/s.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
B
paired electrons spin in opposite directions cancelling their magnetic fields
Answer:
The moment of inertia about an axis through the center and perpendicular to the plane of the square is

Explanation:
From the question we are told that
The length of one side of the square is 
The total mass of the square is 
Generally the mass of one size of the square is mathematically evaluated as

Generally the moment of inertia of one side of the square is mathematically represented as

Generally given that
it means that this moment inertia evaluated above apply to every side of the square
Now substituting for 
So

Now according to parallel-axis theorem the moment of inertia of one side of the square about an axis through the center and perpendicular to the plane of the square is mathematically represented as
![I_a = I_g + m [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20I_g%20%2B%20m%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
=> ![I_a = I_g + {\frac{M}{4} }* [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20I_g%20%2B%20%7B%5Cfrac%7BM%7D%7B4%7D%20%7D%2A%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
substituting for 
=> ![I_a = \frac{1}{12} * \frac{M}{4} * a^2 + {\frac{M}{4} }* [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20%5Cfrac%7B1%7D%7B12%7D%20%20%2A%20%20%5Cfrac%7BM%7D%7B4%7D%20%2A%20a%5E2%20%2B%20%7B%5Cfrac%7BM%7D%7B4%7D%20%7D%2A%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
=> 
=> 
Generally the moment of inertia of the square about an axis through the center and perpendicular to the plane of the square is mathematically represented as

=> 
=> 