The answer is it contains the electrodes. Without the salt scaffold, the arrangement in the anode compartment would turn out to be decidedly charged and the arrangement in the cathode compartment would turn out to be contrarily charged, on account of the charge lopsidedness, the terminal response would rapidly stop.
It keeps up the stream of electrons from the oxidation half-cell to a decrease half cell, this finishes the circuit.
You need to add the last substance to the products side(the right sode of the arrow). You have hydrogen and oxygen - water.
You get: BrO3 + N2H4 -> Br2 + N2 + H2O
# of Br: 1x1 = 1 # of Br: 2x1 = 2
O: 3x1 = 3 O: 1x1 = 1
N: 2x1 = 2 B N: 2x1 = 2
H: 4x1 = 4. H: 2x1 = 2
Br:
Multiply the reactant (left) side by 2 to balance.
O:
You've just multiplied the reactant oxygen by 2 so now the reactant side equals 6. Multiply the product (right) side by six as well.
H:
The product side is now equal to 12. Multiply the reactant side by 3 to balance.
N:
Now you have to balance N because the reactant side has been risen. So multiply the product side by three as well.
You end up with the complete and balanced equation:
2BrO3 + 3N2H4 -> Br2 + 3N2 + 6H2O
Answer:
1 .
2.
Explanation:
The more stable the ionic compound, the more is it lattice energy.
- The more the charge on the cation and the anion, the greater is the lattice energy.
- The less the size of the cation and the anion, the greater is the lattice energy.
Scandium oxide (
) is an oxide in which
behaves as cation and
behaves as anion.
The compounds which has higher lattice energy than scandium oxide are:
1 .
This is because the charge are same on the cation and the anion as in the case of the Scandium oxide but the size of the cation
is smaller than
. Thus, this corresponds to higher lattice energy.
2.
This is because the charge on the cation
is greater than that of
and also the size of the cation
is smaller than
. Thus, this corresponds to higher lattice energy.
Density = mass/volume
density = 81 grams/0.9 cubic centimetersdensity = 90 grams per cubic centimeter
The density of the sample is 90 grams per cubic centimeter.