Answer:
;)..........................................................................................
Explanation:
Answer:
18.8 g
Explanation:
The equation of the reaction is;
AgClO3(aq) + LiBr(aq)------>LiClO3(aq) + AgBr(s)
Number of moles of AgClO3 = 117.63 g/191.32 g/mol = 0.6 moles
Number of moles of LiBr = 10.23 g/86.845 g/mol = 0.1 moles
Since the molar ratio is 1:1, LiBr is the limiting reactant
Molar mass of solid AgBr = 187.77 g/mol
Mass of precipitate formed = 0.1 moles * 187.77 g/mol
Mass of precipitate formed = 18.8 g
<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
HELPPPPPPPPPPPPPPPPPPPPPPPf it is a good idea to
Answer:
The process of evaporation occurs
Explanation: