Answer:
[MgSO₄] = 890 mM/L
Explanation:
In order to determine molarity we need to determine the moles of solute that are in 1L of solution.
Solute: MgSO₄ (10.7 g)
Solvent: water
Solution: 100 mL as volume. (100 mL . 1L / 1000mL) = 0.1L
We convert the solute's mass to moles → 10.7 g / 120.36 g/mol = 0.089 moles
Molarity (mol/L) → 0.089 mol/0.1L = 0.89 M
In order to calculate M to mM/L, we make this conversion:
0.89 mol . 1000 mmoles/ 1 mol = 890 mmoles
Is true. Nitrogen gas behaves more like an ideal gas as the
temperature increases. Under normal conditions such as normal pressure and temperature
conditions , most real gases behave qualitatively as an ideal gas. Many
gases such as air , nitrogen , oxygen ,hydrogen , noble gases , and some heavy
gases such as carbon dioxide can be treated as ideal gases within a reasonable tolerance. Generally,
the removal of ideal gas conditions tends to be lower at higher temperatures and lower density (that is at lower pressure ), since the work made by the intermolecular
forces is less important compared to the kinetic energy<span> of the particles, and the size of the molecules is less important
compared to the empty space between them. </span><span>The ideal gas model
tends to fail at lower temperatures or at high pressures, when intermolecular
forces and intermolecular size are important.</span>
Answer:
The sphere on the left has the most inertia because it has more mass.
Explanation:
Inertia is a property of matter of a substance.
According to Newton's first law of motion, a body continues to stay in the state of rest or constant velocity unless acted upon a external force.
The amount of inertia that an object possess is proportional to the mass of the object.
The sphere on the left is of 300 kg and that on the right is of 30 kg.
Clearly, the sphere on the left has more mass.
Therefore, the sphere on the left has the most inertia.
Answer:
The elements mass number is 147
Explanation:
The number of moles is simply calculated by taking the ratio of mass over the molar mass. The molar mass of silver nitrate AgNO3 is 169.87 g/mol. Therefore:
number of moles AgNO3 = 100 g / (169.87 g/mol)
number of moles AgNO3 = 0.59 moles