Reactions occur when two or more molecules interact and the molecules change. Bonds between atoms are broken and created to form new molecules. That's it.
Answer:

Explanation:
<u>Given:</u>
- Mass,
- Velocity,

where,
are the uncertainties in mass and velocity respectively.
The kinetic energy is given by

The uncertainty in kinetic energy is given as:

Utilize the formula: 
= Final Velocity (86 m/s)
= Initial Velocity (0 m/s)
a = acceleration (m/s²)
t = Time (100 seconds)
As a result,
86 m/s = 0 + (a)(100 seconds)
Using algebra, divide 86 m/s by 100 seconds:
86 m/s = 100a
a = 0.86 m/s²
Rounded to one decimal place: 0.9 m/s²
Let me know if you have any questions!
The answer for this question is letter "B.Fission releases energy, and its products have greater stability."
Fission and Fusion are both nuclear reactions that when they release energy, they make the nuclei more stable. So among the choices, option B is the most fitting for the definition.
<span>
The needle of a compass will always lies along the magnetic
field lines of the earth.
A magnetic declination at a point on the earth’s surface
equal to zero implies that
the horizontal component of the earth’s magnetic field line
at that specific point lies along
the line of the north-south magnetic poles. </span>
The presence of a
current-carrying wire creates an additional <span>
magnetic field that combines with the earth’s magnetic field.
Since magnetic
<span>fields are vector quantities, therefore the magnetic field of
the earth and the magnetic field of the vertical wire must be
combined vectorially. </span></span>
<span>
Where:</span>
B1 = magnetic field of
the earth along the x-axis = 0.45 × 10 ⁻ ⁴ T
B2 = magnetic field due to
the straight vertical wire along the y-axis
We can calculate for B2
using Amperes Law:
B2 = μ₀ i / [ 2 π R ]
B2 = [ 4π × 10 ⁻ ⁷ T • m / A ] ( 36 A ) / [ 2 π (0.21 m ) ] <span>
B2 = 5.97 × 10 ⁻ ⁵ T = 0.60 × 10 ⁻ ⁴ T </span>
The angle can be
calculated using tan function:<span>
tan θ = y / x = B₂ / B₁ = 0.60 × 10 ⁻ ⁴ T / 0.45 × 10 ⁻ ⁴ T <span>
tan θ = 1.326</span></span>
θ = 53°
<span>
<span>The compass needle points along the direction of 53° west of
north.</span></span>