Answer:
C) upward
Explanation:
The problem can be solved by using the right-hand rule.
First of all, we notice at the location of the negatively charged particle (above the wire), the magnetic field produced by the wire points out of the page (because the current is to the right, so by using the right hand, putting the thumb to the right (as the current) and wrapping the other fingers around it, we see that the direction of the field above the wire is out of the page).
Now we can apply the right hand rule to the charged particle:
- index finger: velocity of the particle, to the right
- middle finger: direction of the magnetic field, out of the page
- thumb: direction of the force, downward --> however, the charge is negative, so we must reverse the direction --> upward
Therefore, the direction of the magnetic force is upward.
Answer:
so the answer is this because the answer is that
Explanation:
and the reason why the answer is this and that is because the answer is that
R = U : I. U is in Voltage and I is in Ampère. That gives you R = 36 : 8 = 4,5 Ohm
Answer: a and d
Explanation: A.) the power lines themselves
B.) the wooden pole that supports the lines
C.) the rubber soles on the worker’s boots
D.) the metal tools the worker uses
E.) the wooden ladder leaning against the lines
Answer:
h = height of the hotel room from the ground floor = 237.4m
Explanation:
Change in Potential Energy of tourist = ΔPE = PE2 – PE1 = mgh
PE1 is the potential energy of tourist at the ground floor
PE1 is the potential energy of tourist at the top (hotel room)
Given
PE1 = − 2.01 × 10⁵ J
PE2 = 0J
PE2 – PE1 = mgh
0 – (− 2.01 × 10⁵ J) = mgh
2.01 × 10⁵ J = 86.4×9.8×h
h = 2.01 × 10⁵/(86.4×9.8) = 237.4m