Answer:
cycles, graphing, precise measurementation
Explanation:
Answer:
a) The magnitude of the magnetic field = 7.1 mT
b) The direction of the magnetic field is the +z direction.
Explanation:
The force, F on a current carrying wire of current I, and length, L, that passes through a magnetic field B at an angle θ to the flow of current is given by
F = (B)(I)(L) sin θ
F/L = (B)(I) sin θ
For this question,
(F/L) = 0.113 N/m
B = ?
I = 16.0 A
θ = 90°
0.113 = B × 16 × sin 90°
B = 0.113/16 = 0.0071 T = 7.1 mT
b) The direction of the magnetic field will be found using the right hand rule.
The right hand rule uses the first three fingers on the right hand (the thumb, the pointing finger and the middle finger) and it predicts correctly that for current carrying wires, the thumb is in the direction the wire is pushed (direction of the force; -y direction), the pointing finger is in the direction the current is flowing (+x direction), and the middle finger is in the direction of the magnetic field (hence, +z direction).
Answer:
a = - 1.987 × 10⁶ ft/s²
t = 6.84 × 10⁻⁴ s
Explanation:
v₀ = 910 ft/s
x = 5 in.
relation v = v₀ - k x
v = 0 as body comes to rest
0 = 900 - 5k/12
k = 2184 s⁻¹
acceleration

where
(A) a = -k × v
at v= 910 ft/s
a = - 1.987 × 10⁶ ft/s²
(B) at x = 3.9 in.
v = 910 - 3.9(2184)/12
v = 200.2 m/s




t = 6.84 × 10⁻⁴ s
Answer:
18.1 × 10⁻⁶ A = 18.1 μA
Explanation:
The current I in the wire is I = ∫∫J(r)rdrdθ
Since J(r) = Br, in the cylindrical wire. With width of 10.0 μm, dr = 10.0 μm. r = 1.20 mm. We have a differential current dI. We integrate first by integrating dθ from θ = 0 to θ = 2π.
So, dI = J(r)rdrdθ
dI/dr = ∫J(r)rdθ = ∫Br²dθ = Br²∫dθ = 2πBr²
Now I = (dI/dr)dr at r = 1.20 mm = 1.20 × 10⁻³ m and dr = 10.0 μm = 0.010 mm = 0.010 × 10⁻³ m
I = (2πBr²)dr = 2π × 2.00 × 10⁵ A/m³ × (1.20 × 10⁻³ m)² × 0.010 × 10⁻³ m = 0.181 × 10⁻⁴ A = 18.1 × 10⁻⁶ A = 18.1 μA
Using moving water to produce electricity is an example of changing one form of energy into another form of energy.