Answer:
You will need 450 cells (3 cm each) to meet the voltage/current requirement.
The panel must be 3 cells in one side, by 150 cell in another side. 1350 cm^2 or 0.135 m^2. They must be connected 3 in row in parallel (to add current), then each of the former group must be connected in series to meet the voltage, so it would be 150 rows of connected in series.
The panel can be optimized using a voltage inverter, to convert current to voltage. In this way, less cells can be used achieving the same output specs.
Explanation:
To meet the voltage:
120 [v] required voltage
0.8 [v] voltage of each cell
![\frac{120}{0.8} =150[v]\\](https://tex.z-dn.net/?f=%5Cfrac%7B120%7D%7B0.8%7D%20%3D150%5Bv%5D%5C%5C)
So we need 150 cells in series for the voltage.
To meet the current
1.0 [A] Required current
350[mA]=0.35[A] cell current
1/0.35=3 cell So we need 3 cells in parallel to add the currents and meet the requirement.
See the attached figure
B. If you press that into a calculator it comes up with 153.6. You then shift the decimal point 2 times forward and you end up getting 1.5 x 10^2 V.
Explanation:
According to Newton's First Law of motion, if a box is pushed with no external resistance, the box will keep on moving due to the absence of external force. It might gets stopped due to frictional force that is acting between the surface and the ball. The first law of motion is also known as law of inertia. the magnitude of force acting on the object is given by second law of motion.