9514 1404 393
Answer:
- time: 1.122 seconds
- range: 10.693 m
- maximum height: 1.543 m
Explanation:
<u>Given</u>:
runner is launched at 30° angle to horizontal at 11 m/s
acceleration due to gravity is g = -9.8 m/s²
<u>Find</u>:
runner's hang time
runner's distance to the landing point
runner's maximum height
<u>Solution</u>:
The (horizontal, vertical) speed components will be ...
(11 m/s)(cos(30°), sin(30°)) = (5.5√3 m/s, 5.5 m/s)
The time of flight can be found from the height formula:
h(t) = 1/2gt² +vt . . . . . . where v is the vertical speed at launch
The time we're concerned with is the time when h(t)=0 and t>0.
0 = -4.9t^2 +5.5√3t = t(-4.9t +5.5√3)
The second factor is zero when ...
t = (5.5√3)/4.9 ≈ 1.122 . . . seconds hang time
__
The distance to the landing point will be the product of horizontal speed and hang time:
d = (5.5 m/s)(5.5√3/4.9 s) ≈ 10.693 m . . . . distance to landing
__
The maximum height can be found from the formula (based on conversion of kinetic energy to potential energy) ...
h = v²/|2g| = (5.5 m/s)²/(2(9.8 m/s²)) ≈ 1.543 m . . . . maximum height
Answer:
The lens
It helps to focus on objects and light
Answer:
Human glucocebrosidase is used as a therapeutic drug which is used to treat Gaucher's disease.
The farming of this substances in crops is very helpful for the population. The genetic engineering to insert genes in plants would result in GMOs.
It is more beneficial to use plants for this process as compared to that of animals because it is easily available and easily extracted.
It is more economical and easily accessible by people. It would not harm animals by incorporating the gene in them in laboratory conditions.
Water is required for both the light-dependent and the light-independent reactions to proceed.