Answer:
C. Count the atoms in each substance in the reactants and products.
Explanation:
A chemical reaction can be defined as a chemical process which typically involves the transformation or rearrangement of the atomic, ionic or molecular structure of an element through the breakdown and formation of chemical bonds to produce a new compound or substance.
In order for a chemical equation to be balanced, the condition which must be met is that the number of atoms in the reactants equals the number of atoms in the products.
This ultimately implies that, the mass and charge of the chemical equation are both balanced properly.
In Chemistry, all chemical equation must follow or be in accordance with the Law of Conservation of Mass, which states that mass can neither be created nor destroyed by either a physical transformation or a chemical reaction but transformed from one form to another in an isolated (closed) system.
One of the step used for balancing chemical equations is to count the atoms in each substance in the reactants and products.
For example;
NH3 + O2 -----> NO + H2O
The number of atoms in each chemical element are;
For the reactant side:
Nitrogen, N = 1
Hydrogen, H = 3
Oxygen, O = 2
For the product side;
Nitrogen, N = 1
Hydrogen, H = 2
Oxygen, O = 2
When we balance the chemical equation, we would have;
NH3 + 3O2 -----> 4NO + 2H2O
Answer:

between the plates.
Explanation:
The equation for change of voltage between two points separated a distance d inside parallel conducting plates (<em>which have between them constant electric field</em>) is:

So to calculate our electric field strength we use the fact that the potential 8.8 cm from the zero volt plate is 475 V:

And we use the fact that the plates are 9.2cm apart to calculate the voltage between them:

Answer:
Explanation:
Given
Power Supplied
[/tex]
Efficiency of the motor 
and 



So, vacuum cleaner delivers a power of 
The correct answer is option A. i.e. An important thing to consider when responding to a driver in front of you that stops suddenly is: the mental state of the other driver.
Our talk or discussion can disrturb the balance of the driver or he can get distracted. So, we must try not to speak much while the driver is driving because by doing this we are putting the life of ourselves in danger. Any distrcaction of driver can cause accident.
Convection currents are formed due to the density difference between layers of fluid. The heated layers rise up because their density is less than that of the colder layers. Hope this helps!