Answer: A)30V. First find the current of the circuit. I=V/R(total resistance). So I=60/120=0.5. Now to find voltage drop in R3 use ohms law as given. V(of 3)=(0.5)(60)=30V
Answer:
1. 0.45 s.
2. 4.41 m/s
Explanation:
From the question given above, the following data were obtained:
Height (h) = 1 m
Time (t) =?
Velocity (v) =?
1. Determination of the time taken for the pencil to hit the floor.
Height (h) = 1 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
1 = ½ × 9.8 × t²
1 = 4.9 × t²
Divide both side by 4.8
t² = 1/4.9
Take the square root of both side
t = √(1/4.9)
t = 0.45 s.
Thus, it will take 0.45 s for the pencil to hit the floor.
2. Determination of the velocity with which the pencil hit the floor.
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 0.45 s.
Final velocity (v) =?
v = u + gt
v = 0 + (9.8 × 0.45)
v = 0 + 4.41
v = 4.41 m/s
Thus, the pencil hit the floor with a velocity of 4.41 m/s
<span>If the entropy is greater than the enthalpy, it will have more spontinaity</span>
We determine the electric potential energy of the proton by multiplying the net electric potential to the charge of the proton. The net electric potential is the difference of the final state to the that of the initial state. So, it would be 275 - 125 = 150 V.
electric potential energy = 150 (<span>1.602 × 10-19) = 2.4x10^-17 J</span>
Answer:
The current can't 'split down the parallel branch, because the diode is reverse biased so is blocking the flow of current. So basically it's acting as an open circuit. Also when the current flows it wouldn't reduce the currents amount flow through the resistor.
Explanation: