Answer:
35 Joules
Explanation:
Applying
Input Energy(Q) = Useful energy output(U)+Wasted Energy(W)
Q = U+W.............................. Equation 1
Make U the subject of the equation
U = Q-W................... Equation 2
From the question,
Given: Q = 120 Joules, W = 85 Joules
Substitute these values into equation 2
U = 120-85
U = 35 Joules
Answer:
0.23N for the speed
at the bottom of the circle
Answer:
T = 0.638 s
Explanation:
vmax = Aω
ω = 7.02/0.713 = 9.8457 rad/s
T = 2π/ω = 2π/9.8457 = 0.63816
The focal length of a lens needed by a woman whose near point is 50cm from her eyes is 50cm.
To find the answer, we have to know about the focal length of correcting lens.
<h3>
How to find the focal length of
correcting lens?</h3>
- If x is the distance of nearest point of the defective eye and D is the least distance of distinct vision, then, the expression for focal length of the correcting lens will be,

- It is given that, the woman whose near point is 50cm from her eyes, assuming the least distance of distinct vision for a normal eye is 25cm. Thus, the focal length will be,

Thus, we can conclude that, the focal length of a lens needed by a woman whose near point is 50cm from her eyes is 50cm.
Learn more about the focal length here:
brainly.com/question/27915592
#SPJ9
Answer:
The answer to your question is: F = 0.4375 N. The force will be 16 times lower than with the first conditions.
Explanation:
Data
F = 7 N
F = ? if the masses is quartered
Formula

Process
Normal conditions F = Km₁m₂/r² = 7
When masses quartered F = K(m₁/4)(m₂/4)/r² = ?
F = K(m₁m₂/16)/r²
F = K(m₁m₂/16r² = 7/16 = 0.4375 N