Answer: A positively charged ion/ cation
Explanation: When an atom loses all of its electrons, it becomes a positively charged ion. Also referred to as the cation, the object will have a shortage of electrons, leading to a positive charge. Keep in mind that an atom will become positive if it loses electrons, and will become negative if it gains electrons.
Hope this helps! Comment below for more questions.
This question apparently wants you to get comfortable
with E = m c² . But I must say, this question is a lame
way to do it.
c = 3 x 10⁸ m/s
E = m c²
1.03 x 10⁻¹³ joule = (m) (3 x 10⁸ m/s)²
Divide each side by (3 x 10⁸ m/s)²:
Mass = (1.03 x 10⁻¹³ joule) / (9 x 10¹⁶ m²/s²)
= (1.03 / 9) x (10⁻¹³ ⁻ ¹⁶) (kg)
= 1.144 x 10⁻³⁰ kg . (choice-1)
This is roughly the mass of (1 and 1/4) electrons, so it seems
that it could never happen in nature. The question is just an
exercise in arithmetic, and not a particularly interesting one.
______________________________________
Something like this could have been much more impressive:
The Braidwood Nuclear Power Generating Station in northeastern
Ilinois USA serves Chicago and northern Illinois with electricity.
<span>The station has two pressurized water reactors, which can generate
a net total of 2,242 megawatts at full capacity, making it the largest
nuclear plant in the state.
If the Braidwood plant were able to completely convert mass
to energy, how much mass would it need to convert in order
to provide the total electrical energy that it generates in a year,
operating at full capacity ?
Energy = (2,242 x 10⁶ joule/sec) x (86,400 sec/day) x (365 da/yr)
= (2,242 x 10⁶ x 86,400 x 365) joules
= 7.0704 x 10¹⁶ joules .
How much converted mass is that ?
E = m c²
Divide each side by c² : Mass = E / c² .
c = 3 x 10⁸ m/s
Mass = (7.0704 x 10¹⁶ joules) / (9 x 10¹⁶ m²/s²)
= 0.786 kilogram ! ! !
THAT should impress us ! If I've done the arithmetic correctly,
then roughly (1 pound 11.7 ounces) of mass, if completely
converted to energy, would provide all the energy generated
by the largest nuclear power plant in Illinois, operating at max
capacity for a year !
</span>
C) In the absence of an unbalanced force, an object at rest will stay at rest and an object in motion will stay in motion.
hope this helps and have a great day :)
Answer:
a)
The direction will be negative direction.
b)
The direction will be positive direction.
Explanation:
Given that
q1 = +7.7 µC is at x1 = +3.1 cm
q2 = -19 µC is at x2 = +8.9 cm
We know that electric filed due to a charge given as
Now by putting the va;ues
a)
The net electric field
The direction will be negative direction.
As we know that electric filed line emerge from positive charge and concentrated at negative charge.
b)
Now
distance for charge 1 will become =5.5 - 3.1 = 2.4 cm
distance for charge 2 will become =8.9-5.5 = 3.4 cm
The net electric field
The direction will be positive direction.
Here refrigerator removes 55 kcal heat from freezer
Refrigerator releases 73.5 kcal heat to surrounding
So here we can use energy conservation principle by II Law of thermodynamics
the law says that
here we know that
= heat released to the surrounding
= heat absorbed from freezer
W = work done by the compressor
now using above equation we can write
So here compressor has to do 18.5 k cal work on it