Answer:
1680 ways
Step-by-step explanation:
Total number of integers = 10
Number of integers to be selected = 6
Second smallest integer must be 3. This means the smallest integer can be either 1 or 2. So, there are 2 ways to select the smallest integer and only 1 way to select the second smallest integer.
<u>2 ways</u> <u>1 way</u> <u> </u> <u> </u> <u> </u> <u> </u>
Each of the line represent the digit in the integer.
After selecting the two digits, we have 4 places which can be filled by 7 integers. Number of ways to select 4 digits from 7 will be 7P4 = 840
Therefore, the total number of ways to form 6 distinct integers according to the given criteria will be = 1 x 2 x 840 = 1680 ways
Therefore, there are 1680 ways to pick six distinct integers.
I’m pretty sure the answer is E 35.9
Answer:
82/43 = 1 and 39/43
Step-by-step explanation:
When dividing 82 by 43 , the operation follows;
82/43 = 1 and 39/43
This means the quotient is 1 and reminder is 39
However;
82/43 = 1.907 ------nearest whole number is 2.
so the quotient can be approximated to the nearest whole number as 2.
Answer:
Let's define the high temperature as T.
We know that:
"four times T, was more than 2*T plus 66°C"
(i assume that the temperature is in °C)
We can write this inequality as:
4*T > 2*T + 66°C
Now we just need to solve this for T.
subtracting 2*T in both sides, we get:
4*T - 2*T > 2*T + 66°C - 2*T
2*T > 66°C
Now we can divide both sides by 2:
2*T/2 > 66°C/2
T > 33°C
So T was larger than 33°C
Notice that T = 33°C is not a solution of the inequality, then we should use the symbol ( for the set notation.
Then the range of possible temperatures is:
(33°C, ...)
Where we do not have an upper limit, so we could write this as:
(33°C, ∞°C)
(ignoring the fact that ∞°C is something impossible because it means infinite energy, but for the given problem it works)
Answer:
5 tripled is 15, x=5
Step-by-step explanation:
14-9=5 which is the number you're looking for, and 3×5=15