What exactly is the question you are asking?
Answer:
M is Li, X is boron, and Q is oxygen. MX is LiB, lithium bromide. QX is BO, boron oxide (not Body Odor).
Explanation: The atomic masses don't match exactly with those listed in the periodic table. Boron, Oxygen, and Lithium come the closest.
Lithium reacts with bromine since it happily donates it's single 2s electron to bromine's 4p orbital to fill bromine's 4s and 4p valence orbitals to go from 7 to 8 valence electrons, it's happy state.
Boron reacts with oxygen to form B2O3, which I'll happily write as O=BOB=O, since my name is Bob. This is more complex, but both elements want to move electrons around in order to reach a more stable electron configuration. Boron has 3 valence electrons and oxygen has 6. So each oxygen needs 2 electrons to fill it's outer shell and boron is happy to lose it's 3 valence electrons to reach an outer shell equiovalent to helium. So 2 borons contribute a total of 6 electrons, and the 3 oxygens have room for a total of 6 electrons to fill their outer shell.
<span> some unique properties about ice that differ from liquid water to water vapor are that it is a solid, not a liquid or gas. It also expands. </span>
Answer:
The answer to your question is 1.2 moles of copper
Explanation:
Data
mass of copper = 75 g
moles = ?
Process
1.- Look in the periodic table for the atomic mass of copper.
Atomic mass = 63.55 g/mol
2.- Use proportions to determine the moles of copper in 75 g
63.55 g of copper -------------------- 1 mol
75 g of copper -------------------- x
Use cross multiplication
x = (75 x 1) / 63.55
x = 75 / 63.55
x = 1.18 moles ≈ 1.2 moles of copper
<span>Endothermic reactions take in heat from the environment in order to react while exothermic reactions release heat during the reaction. For this, D must be true as the products have less energy because they have released heat during the reaction. A and C are incorrect because they products and reactants are equal and B is wrong because the energy of the products would be more as the reaction took in heat.</span>