Answer:
to collect liquid ethanol and leave ethene as a gas because ethanol has hydrogen bonds
Explanation:
The chemist would be lesser than the temperature of the mixture as to collect the liquid ethanol and then leave ethene as a gas since the ethanol is a bond that should be hydrogen. Also -OH that available in the ethanol would be responsible for the hydrogen bonds also it is the main and significant molecular forice
So as per the given situation the above represent the answer
Answer:
B. Element
Explanation:
Tungsten is an chemical element
Explanation:
there you go you can just look up atomic model for CD and click images
Answer:
3853 g
Step-by-step explanation:
M_r: 107.87
16Ag + S₈ ⟶ 8Ag₂S; ΔH°f = -31.8 kJ·mol⁻¹
1. Calculate the moles of Ag₂S
Moles of Ag₂S = 567.9 kJ × 1 mol Ag₂S/31.8kJ = 17.858 mol Ag₂S
2. Calculate the moles of Ag
Moles of Ag = 17.86 mol Ag₂S × (16 mol Ag/8 mol Ag₂S) = 35.717 mol Ag
3. Calculate the mass of Ag
Mass of g = 35.717 mol Ag × (107.87 g Ag/1 mol Ag) = 3853 g Ag
You must react 3853 g of Ag to produce 567.9 kJ of heat
The value of Q for 125.0 ml of 0.0500 m Pb(NO3)2 is mixed with 75.0 ml of 0.0200 m NaCl at 25°C is 2.11 × 10^(-6).
Aa we know that, 125mL of 0.06M Pb(NO3)2 is mixed with 75.0 ml of 0.0200 m NaCl.
Given, T = 25°C.
<h3>Chemical equation:</h3>
Pb(NO3)2 + NaCl ---- NaNO3 + PbCl2
PbCl2 in aqueous solution split into following ions
PbCl2 ------ Pb(+2) + 2Cl-
Q = [Pb(+2)] [Cl-]^2
The Concentration of Pb(+2) ions and Cl- ions can be calculated as
[Pb(+2)] = 0.06 × 125/200
= 0.0375
[Cl-] = 0.02 × 75/200
= 0.0075
By substituting all the values, we get
[0.0375] [0.0075]^2
= 2.11 × 10^(-6).
Thus, we calculated that the value of Q for 125.0 ml of 0.0500 m Pb(NO3)2 is mixed with 75.0 ml of 0.0200 m NaCl at 25°C is 2.11 × 10^(-6).
learn more about Ions:
brainly.com/question/13692734
#SPJ4