200 million because of you the largest states count as 100
Ways to increase reaction rate:
*increase the total surface area per volume ratio
*increase the temperature
*increase the pressure
*decrease the size of particles
<span>The wavelength of the associated sound will increase. This will be noticed by the sound having a lower tone. As the sound passes through the solid object, not only will it sound lower in tone, it will sound softer, evidenced by if a person closes a door to a room and listens to a sound played from inside.</span>
Answer:
The final temperature of sulfur dioxide gas is 215.43 C
Explanation:
Gay Lussac's Law establishes the relationship between the temperature and the pressure of a gas when the volume is constant. This law says that if the temperature increases the pressure increases, while if the temperature decreases the pressure decreases. In other words, the pressure and temperature are directly proportional quantities.
Mathematically, the Gay-Lussac law states that, when a gas undergoes a transformation at constant volume, the quotient of the pressure exerted by the temperature of the gas remains constant:

Assuming you have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment, by varying the temperature to a new value T2, then the pressure will change to P2, and it will be true:

The reference temperature is the absolute temperature (in degrees Kelvin)
In this case:
- P1= 0.450 atm
- T1= 20 C= 293.15 K (being 0 C= 273.15 K)
- P2=0.750 atm
- T2= ?
Replacing:

Solving:


T2=488.58 K
Being 273.15 K= 0 C, then 488.58 K= 215.43 C
<u><em>The final temperature of sulfur dioxide gas is 215.43 C</em></u>
Correct Answer: option 1 i.e. C
Reason:
The the compound of interest i.e. XCl4, since there are 4 Cl atoms bonded to X. This signifies that the valency of X is 4.
There atomic number of C is 6. It's electronic configuration is giving by 1s2 2s2 2p2. Thus, there are 4 electrons in valence shell of C. This signifies that valency of C is 4. Hence the compound present in present case is CCl4.