Answer:
See explanation
Explanation:
- When the string is pressed on a particular fret, the note is the same. That's because the string will sound from bridge to that fret-wire. It's always the same distance, so will always be the same note.
- Frets is that it splits the fingerboard into discrete diatonic parts, and well made fret-boards will mean the same note gets played on the same fret on the same string every time.
(a) The tension the musician must stretch it is 147.82 N.
(b) The percent increase in tension is needed to increase the frequency is 26%.
<h3>Tension in the string</h3>
v = √T/μ
where;
- v is speed of the wave
- T is tension
- μ is mass per unit length = 0.0144 kg / 0.6 m = 0.024 kg/m
v = Fλ
in fundamental mode, v = F(2L)
v = 2FL
v = 2 x 65.4 x 0.6 = 78.48 m/s
v = √T/μ
v² = T/μ
T = μv²
T = 0.024 x (78.48)²
T = 147.82 N
<h3>When the frequency is 73.4 Hz;</h3>
v = 2FL = 2 x 73.4 x 0.6 = 88.08 m/s
T = μv²
T = (0.02)(88.08)²
T = 186.19 N
<h3>Increase in the tension</h3>
= (186.19 - 147.82)/(147.82)
= 0.26
= 0.26 x 100%
= 26 %
Thus, the tension the musician must stretch it is 147.82 N.
The percent increase in tension is needed to increase the frequency is 26%.
Learn more about tension here: brainly.com/question/24994188
#SPJ1
Answer:
See the explanation below.
Explanation:
A lever is a simple machine that changes the magnitude and direction of the force applied to move an object. Minimizes the force needed to lift the object.
By means of the following image, we can see the principle of operation of a lever.
The load can be moved thanks to the force multiplied by the distance to the fulcrum.
Given
The projectile is in air for a time of t=8 sec
To find
The time it takes to reach the highest point
Explanation
A projectile moves up to the highest point and then again moves down following a parabolic path.
So it will reach the highest point at a time half the time it requires to follow teh parabolic path.
The time taken to reach the highest point is 4 sec
Conclusion
The time taken is 4 sec.