You would take a black dot at the top right of the y axis and dray it to the the far right of your x axis. hope this helps have a nice day and God bless
Answer:
a = -0.33 m/s² k^
Direction: negative
Explanation:
From Newton's law of motion, we know that;
F = ma
Now, from magnetic fields, we know that;. F = qVB
Thus;
ma = qVB
Where;
m is mass
a is acceleration
q is charge
V is velocity
B is magnetic field
We are given;
m = 1.81 × 10^(−3) kg
q = 1.22 × 10 ^(−8) C
V = (3.00 × 10⁴ m/s) ȷ^.
B = (1.63T) ı^ + (0.980T) ȷ^
Thus, since we are looking for acceleration, from, ma = qVB; let's make a the subject;
a = qVB/m
a = [(1.22 × 10 ^(−8)) × (3.00 × 10⁴)ȷ^ × ((1.63T) ı^ + (0.980T) ȷ^)]/(1.81 × 10^(−3))
From vector multiplication, ȷ^ × ȷ^ = 0 and ȷ^ × i^ = -k^
Thus;
a = -0.33 m/s² k^
-- There is no need to develop the pictures. They are available immediately in a digital camera.
-- There is no change in the teacher from one picture to the next.
-- The distance the watermelon falls from the teacher in each new picture is more in each picture than in the picture before it. (C)
Answer:
k = 11,564 N / m, w = 6.06 rad / s
Explanation:
In this exercise we have a horizontal bar and a vertical spring not stretched, the bar is released, which due to the force of gravity begins to descend, in the position of Tea = 46º it is in equilibrium;
let's apply the equilibrium condition at this point
Axis y
W_{y} - Fr = 0
Fr = k y
let's use trigonometry for the weight, we assume that the angle is measured with respect to the horizontal
sin 46 =
/ W
W_{y} = W sin 46
we substitute
mg sin 46 = k y
k = mg / y sin 46
If the length of the bar is L
sin 46 = y / L
y = L sin46
we substitute
k = mg / L sin 46 sin 46
k = mg / L
for an explicit calculation the length of the bar must be known, for example L = 1 m
k = 1.18 9.8 / 1
k = 11,564 N / m
With this value we look for the angular velocity for the point tea = 30º
let's use the conservation of mechanical energy
starting point, higher
Em₀ = U = mgy
end point. Point at 30º
= K -Ke = ½ I w² - ½ k y²
em₀ = Em_{f}
mgy = ½ I w² - ½ k y²
w = √ (mgy + ½ ky²) 2 / I
the height by 30º
sin 30 = y / L
y = L sin 30
y = 0.5 m
the moment of inertia of a bar that rotates at one end is
I = ⅓ mL 2
I = ½ 1.18 12
I = 0.3933 kg m²
let's calculate
w = Ra (1.18 9.8 0.5 + ½ 11,564 0.5 2) 2 / 0.3933)
w = 6.06 rad / s