Answer:
The work done by the child as the tricycle travels down the incline is 416.96 J
Explanation:
Given;
initial velocity of the child,
= 1.4 m/s
final velocity of the child,
= 6.5 m/s
initial height of the inclined plane, h = 2.25 m
length of the inclined plane, L = 12.4 m
total mass, m = 48 kg
frictional force,
= 41 N
The work done by the child is calculated as;

Therefore, the work done by the child as the tricycle travels down the incline is 416.96 J
Answer:
2.96 × 10^4 N
Explanation:
1 atm = 101325 N/m², pressure inside the airtight room = 1.02 atm, pressure outside due to hurricane = 0.91 atm
net pressure directed outward = P inside - P outside
net pressure = 1.02 - 0.91 = 0.11 atm
where 1 atm = 101325N/m²
0.11 atm = 0.11 × 101325 N/m² = 11145.75 N/m²
area of the square wall = l × l where l is the length of the wall in meters = 1.63 × 1.63 = 2.6569
net pressure = net force / area
make net force subject of the formula
net force = net pressure × area = 11145.75 × 2.6569 = 2.96 × 10 ^4 N
Here we will say that there is no external torque on the system so we will have

here we know that

where we know that

Also we know that

initial angular speed will be

now from above equation



now we have

so final speed will be 2.41 rad/s
Answer:
0.231 N
Explanation:
To get from rest to angular speed of 6.37 rad/s within 9.87s, the angular acceleration of the rod must be

If the rod is rotating about a perpendicular axis at one of its end, then it's momentum inertia must be:

According to Newton 2nd law, the torque required to exert on this rod to achieve such angular acceleration is

So the force acting on the other end to generate this torque mush be:
