Answer:
the acceleration of the race car is 2 m/s²
Explanation:
Given;
initial velocity of the race car, u = 44 m/s
final velocity of the race car, v = 66 m/s
time of motion of the race car, t = 11 s
The acceleration of the race car is calculated as;

Therefore, the acceleration of the race car is 2 m/s²
Answer:
You will need 450 cells (3 cm each) to meet the voltage/current requirement.
The panel must be 3 cells in one side, by 150 cell in another side. 1350 cm^2 or 0.135 m^2. They must be connected 3 in row in parallel (to add current), then each of the former group must be connected in series to meet the voltage, so it would be 150 rows of connected in series.
The panel can be optimized using a voltage inverter, to convert current to voltage. In this way, less cells can be used achieving the same output specs.
Explanation:
To meet the voltage:
120 [v] required voltage
0.8 [v] voltage of each cell
![\frac{120}{0.8} =150[v]\\](https://tex.z-dn.net/?f=%5Cfrac%7B120%7D%7B0.8%7D%20%3D150%5Bv%5D%5C%5C)
So we need 150 cells in series for the voltage.
To meet the current
1.0 [A] Required current
350[mA]=0.35[A] cell current
1/0.35=3 cell So we need 3 cells in parallel to add the currents and meet the requirement.
See the attached figure
Explanation:
(a) Hooke's law:
F = kx
7.50 N = k (0.0300 m)
k = 250 N/m
(b) Angular frequency:
ω = √(k/m)
ω = √((250 N/m) / (0.500 kg))
ω = 22.4 rad/s
Frequency:
f = ω / (2π)
f = 3.56 cycles/s
Period:
T = 1/f
T = 0.281 s
(c) EE = ½ kx²
EE = ½ (250 N/m) (0.0500 m)²
EE = 0.313 J
(d) A = 0.0500 m
(e) vmax = Aω
vmax = (0.0500 m) (22.4 rad/s)
vmax = 1.12 m/s
amax = Aω²
amax = (0.0500 m) (22.4 rad/s)²
amax = 25.0 m/s²
(f) x = A cos(ωt)
x = (0.0500 m) cos(22.4 rad/s × 0.500 s)
x = 0.00919 m
(g) v = dx/dt = -Aω sin(ωt)
v = -(0.0500 m) (22.4 rad/s) sin(22.4 rad/s × 0.500 s)
v = -1.10 m/s
a = dv/dt = -Aω² cos(ωt)
a = -(0.0500 m) (22.4 rad/s)² cos(22.4 rad/s × 0.500 s)
a = -4.59 m/s²
Answer:
C. Up, equal to the can's weight
Explanation:
You are camping in the breathtaking mountains if Colorado. You spy an unopened diet soda can floating motionless below the surface of a lake. What is the direction and amount of force the water exerts on it?
A. Zero
B. Down, equal to the can's weight
C. Up, equal to the can's weight
D. Not enough information is given
from the principle of flotation which states that a
When a body displaces a weight of water equal to its own weight, it floats. : A floating object displaces a weight of fluid equal to its own weight. ... Archimedes' principle equates the buoyant force to the weight of the fluid displaced.
the upthrust (this is the upward vertical force exerted on an object in fluid)in the water equals the weight of the body in water it floats.
The correct answer to this qustion is velocity and time