the angular frequency of this motion is 5.46rad /sec
The formula for the angular frequency is = 2π/T. Radians per second are used to express angular frequency. The frequency, f = 1/T, is the period's inverse. The motion's frequency, f = 1/T = ω/2π, determines how many complete oscillations occur in a given amount of time so in this case the It is measured in units of Hertz, (1 Hz = 1/s).
herex
=
(17.4cm)cos[(5.46s− 1)t]
is written in the general form
where we can identify: A=17.4cm and ω
=5.46rad /sec
To learn more about angular frequency :
brainly.com/question/12446100
#SPJ4
The answer is C hope it helps
A. The Dawes limit tells
us that the resolving power is equal to 11.6 / d, where d is the diameter of
the eye’s pupil in units of centimeters. The eye's pupil can dialate to approximately
7 mm, or 0.7 cm. So 11.6 / .7 = 16.5 arc seconds, or about a quarter arc
minute ~ 17 arc seconds<span>
Although, the standard answer for what people can really see
is about 1 arc minute.
</span>
<span>
B. It is considered as linear, so given a 10 meter telescope
(10,000 mm): </span>
10000 / 7 = 1428 times
better for the 10 meter scope ~ 1400 times better (in 2 significant figures)
<span>
<span>C. For a 7 cm interferometer, that is just similar to a 7 cm
scope. Therefore we would expect </span></span>
<span><span>11.6 / 7 = 1.65 arc seconds ~ 1.7 arc seconds</span></span>
<span><span>T</span></span>his value is what
we typically can get from a 7 cm scope.
Answer:4s^-1
Explanation:Tangential Acceleration=v^2/r=(20)²/100=400/100
The Earth is a constantly changing planet. Its crust is continually being created, modified, and destroyed. As a result, rocks that record its earliest history have not been found and probably no longer exist. Nevertheless, there is substantial evidence that the Earth and the other bodies of the Solar System are 4.5-4.6 billion years old, and that the Milky Way Galaxy and the Universe are older still. The principal evidence for the antiquity of Earth and its cosmic surroundings is:The oldest rocks on Earth, found in western Greenland, have been dated by four independent radiometric dating methods at 3.7-3.8 billion years. Rocks 3.4-3.6 billion years in age have been found in southern Africa, western Australia, and the Great Lakes region of North America. These oldest rocks are metamorphic rocks but they originated as lava flows and sedimentary rocks. The debris from which the sedimentary rocks formed must have come from even older crustal rocks. The oldest dated minerals (4.0-4.2 billion years) are tiny zircon crystals found in sedimentary rocks in western Australia.
The oldest Moon rocks are from the lunar highlands and were formed when the early lunar crust was partially or entirely molten. These rocks, of which only a few were returned by the Apollo missions, have been dated by two methods at between 4.4-4.5 billion years in age.
The majority of the 70 well-dated meteorites have ages of 4.4-4.6 billion years. These meteorites, which are fragments of asteroids and represent some of the most primitive material in the solar system, have been dated by 5 independent radiometric dating methods.
The "best" age for the Earth is based on the time required for the lead isotopes in four very old lead ores (galena) to have evolved from the composition of lead at the time the Solar System formed, as recorded in the Canyon Diablo iron meteorite. This "model lead age" is 4.54 billion years.
The evidence for the antiquity of the Earth and Solar System is consistent with evidence for an even greater age for the Universe and Milky Way Galaxy. a) The age of the Universe can be estimated from the velocity and distance of galaxies as the universe expands. The estimates range from 7 to 20 billion years, depending on whether the expansion is constant or is slowing due to gravitational attraction. b) The age of the Galaxy is estimated to be 14-18 billion years from the rate of evolution of stars in globular clusters, which are thought to be the oldest stars in the Galaxy. The age of the elements in the Galaxy, based on the production ratios of osmium isotopes in supernovae and the change in that ratio over time due to radioactive decay, is 8.6-15.7 billion years. Theoretical considerations indicate that the Galaxy formed within a billion years of the beginning of the Universe. c) Combining the data from a) and b), the "best, i.e., most consistent, age of the universe is estimated to be around 14 billion years. For more current information on the age of the universe.