Answer:
Option (B)
Explanation:
A lift chart usually refers to a graphical representation that is mainly used in order to improve the drawbacks of a mining model by making a comparison with any random guess, and also helps in determining the changes that occur in terms of lift scores.
It describes the binary classification of the problems associated with the mining activity. This type of chart is commonly used to differentiate the lift scores for a variety of models, and picking the best one out of all.
Thus, the correct answer is option (B).
Answer:
1,920 Joules
Explanation:
K.E. = 1/2 mv2
so K.E. = 1/2 (60)(8x8) = 1,920 Joules
Answer:
the magnitude of the electric force on the projectile is 0.0335N
Explanation:
time of flight t = 2·V·sinθ/g
= (2 * 6.0m/s * sin35º) / 9.8m/s²
= 0.702 s
The body travels for this much time and cover horizontal displacement x from the point of lunch
So, use kinematic equation for horizontal motion
horizontal displacement
x = Vcosθ*t + ½at²
2.9 m = 6.0m/s * cos35º * 0.702s + ½a * (0.702s)²
a = -2.23 m/s²
This is the horizontal acceleration of the object.
Since the object is subject to only electric force in horizontal direction, this acceleration is due to electric force only
Therefore,the magnitude of the electric force on the projectile will be
F = m*|a|
= 0.015kg * 2.23m/s²
= 0.0335 N
Thus, the magnitude of the electric force on the projectile is 0.0335N
Answer:
the simplified expression is written as 3.4 x 10³
Explanation:
Given expression;

in scientific notation, the expression is simplified as;

Therefore, in scientific notation, the simplified expression is written as 3.4 x 10³