The spring constant will be k= 5.5N/m for a 200g air track glider attached to a spring.
<h3>What is spring constant?</h3>
The spring constant, k, is a measure of the stiffness of the spring. It is different for different springs and materials.
Calculation for What is the spring constant
First step is to calculate the time period
T = 12 second/10
T = 1.2 second
Now let calculate the spring constant using this formula

Where,
m=0.2kg
T=1.2second
k represent spring constant=?
Let plug in the formula



k=5.48 N/m
k=5.5 N/m ( Approximately)
Therefore the spring constant will be 5.5 N/m
To know more about spring constant follow
brainly.com/question/1968517
#SPJ4
When two different air masses meet, a boundary is formed. the boundary between two air masses is called a front. weather at a front is usually cloudy and stormy. there at four different fronts: cold, warm, stationary, and occluded
Answer: when fish is stunning it's prey it's cause electric shock to the prey that's make it die and be able to be utilized by electric eel(fish generate electric surround)
Answer:
Av = 25 [m/s]
Explanation:
To solve this problem we must use the definition of speed, which is defined as the relationship between distance over time. for this case we have.

where:
Av = speed [km/h] or [m/s]
distance = 180 [km]
time = 2 [hr]
Therefore the speed is equal to:
![Av = \frac{180}{2} \\Av = 90 [km/h]](https://tex.z-dn.net/?f=Av%20%3D%20%5Cfrac%7B180%7D%7B2%7D%20%5C%5CAv%20%3D%2090%20%5Bkm%2Fh%5D)
Now we must convert from kilometers per hour to meters per second
![90[\frac{km}{h}]*1000[\frac{m}{1km}]*1[\frac{h}{3600s} ]= 25 [m/s]](https://tex.z-dn.net/?f=90%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A1000%5B%5Cfrac%7Bm%7D%7B1km%7D%5D%2A1%5B%5Cfrac%7Bh%7D%7B3600s%7D%20%5D%3D%2025%20%5Bm%2Fs%5D)
The change in the internal energy of the system is 110 kJ.
<h3>What is internal energy?</h3>
Internal energy is defined as the energy associated with the random, disorder motions of molecules.
calculate the change in internal energy, we apply the formula below.
Formula:
- ΔU = Q-W.................... Equation 1
Where:
- ΔU = Change in internal energy
- Q = Heat absorbed from the surroundings
- W = work done by the system
From the question,
Given:
Substitute these values into equation 1
Hence, The change in the internal energy of the system is 110 kJ.
Learn more about change in internal energy here: brainly.com/question/4654659