True !! Hope I helped you out a bit!
Answer: 4.7m/s²
Explanation:
According to newton's first law,
Force = mass × acceleration
Since we are given more the one force, we will take the resultant of the two vectors.
Mass = 2.0kg
F1+F2 = (3i-8j)+(5i+3j)
Adding component wise, we have;
F1+F2 = 3i+5i-8j+3j
F1+F2 = 8i-5j
Resultant of the sum of the forces will be;
R² = (8i)²+(-5j)²
Since i.i = j.j = 1
R² = 8²+5²
R² = 64+25
R² = 89
R = √89
R = 9.4N
Our resultant force = 9.4N
Substituting in the formula
F = ma
9.4 = 2a
a = 9.4/2
a = 4.7m/s²
Therefore, magnitude of the acceleration of the particle is 4.7m/s²
Mathematically, relation between force, area and pressure is given by...
Pressure = force / area
hence, pressure is directly proportional to force but inversely proportional to area.
This question is incomplete; here is the complete question:
Marco is conducting an experiment. He knows the wave that he is working with has a wavelength of 32.4 cm. If he measures the frequency as 3 hertz, which statement about the wave is accurate?
A. The wave has traveled 32.4 cm in 3 seconds.
B. The wave has traveled 32.4 cm in 9 seconds.
C. The wave has traveled 97.2 cm in 3 seconds.
D. The wave has traveled 97.2 cm in 1 second.
The answer to this question is D. The wave has traveled 97.2 cm in 1 second.
Explanation:
The frequency of a wave, which is in this case 3 hertz, represents the number of waves that go through a point during 1 second. According to this, if the frequency of the wave is 3 hertz this means in 1 second there were 3 waves. Moreover, if you multiply the wavelength (32.4cm) by the frequency (3) you will know the distance the wave traveled in 1 second: 32.4 x 3 = 97.2 cm. This makes option D the correct one as the distance in 1 second was 97.2 cm.