In order to completely describe a velocity,
you need a speed and a direction.
Answer:
calar quantity, length of path. displacement: vector quanity, "as the crow flies" difference between start and finish regardless of path taken. Term.
Explanation:
Answer:
Explanation:
Just like your body converts food into energy, a car engine converts gas into motion. ... The process of converting gasoline into motion is called "internal combustion." Internal combustion engines use small, controlled explosions to generate the power needed to move your car all the places it needs to go.
Answer:
D. the masses of the objects and the distance between them
Explanation:
Gravitation is a force, a force doesn't care about the shape or density of objects, only about their masses... and distances.
And you can get it using the following equation:

Where :
G is the universal gravitational constant
: G = 6.6726 x 10-11N-m2/kg2
m represent the mass of each of the two objects
d is the distance between the centers of the objects.
<h2>5.3 km</h2>
Explanation:
This question involves continuous displacement in various directions. When it becomes difficult to imagine, vector analysis becomes handy.
Let us denote each of the individual displacements by a vector. Consider the unit vectors
as the unit vectors in the direction of East and North respectively.
By simple calculations, we can derive the unit vectors
in the directions North,
South of West and
North of West respectively.
So Total displacement vector = Sum of individual displacement vectors.
Displacement vector = 
Magnitude of Displacement = 
∴ Total displacement = 