Answer:
The found acceleration in terms of h and t is:

Explanation:
(The complete question is given in the attached picture. We need to find the acceleration in terms of h and t in this question)
We are given 3 stages of movement of elevator. We'll first model them each of the stage one by one to find the height covered in each stage. After that we'll find the total height covered by adding heights covered in each stage, and equate it to Total height h. From that we can find the formula for acceleration.
<h3>
</h3><h3>
Stage 1</h3>
Constant acceleration, starts from rest.
Distance = 
Velocity = 
<h3>Stage 2</h3>
Constant velocity where
Velocity = 
Distance =
<h3>

</h3><h3 /><h3>Stage 3</h3>
Constant deceleration where
Velocity = 
Distance =

<h3>Total Height</h3>
Total height = y₁ + y₂ + y₃
Total height = 
<h3 /><h3>Acceleration</h3>
Find acceleration by rearranging the found equation of total height.
Total Height = h
h = 5a(t₁)²

b is your answers in this thread
Answer: v = 4.4 m/s
Explanation:
In the absence of friction, the total mechanical energy will be constant
KE₀ + PE₀ = KE₁ + PE₁
0 + mg(6) = ½mv₁² + mg(5)
½mv₁² = mg(6 - 5)
v = √(2g(1)) = 4.4 m/s
Core
Home of atoms of hydrogen also the lightest element in the universe.
Radiative Zone
Outside the inner Core it radiates energy through the process of photon emission.
Convection Layer
Outer most Layer of the Core, it extends form a depth of 200,000 kilometres to the visible surface. Energy is created by Convection. This is where light is produced.
Photosphere
Surrounds the stars and is where light and heat radiate.
Chromosphere
Reddish gas layer outside of the photosphere I think it also works with the Corona.
Corona
Aura of Plasma that surrounds the Sun and other stars, it extends millions of kilometres and easily seen during a total eclipse.
Answer:
n = 1,875
Explanation:
The speed of light in vacuum is constant (c) and in a material medium it is
v = d / t
The refractive index of a material is defined by
n = c / v
Let's look for the speed of light in the material, in general the length that light travels is known, this value is high, x = 1, when we place a block on the road, a small amount is lengthened by the length of the block, which in general is despised
These measurements are made on a digital oscilloscope that allows to stop the signals and measure their differences, that is, the zero is taken when the first ray arrives and the time for the second ray is measured,
v = d / t
v = 1 / 6.25 10⁻⁹
v = 1.6 10⁸ m / s
we calculate the refractive index
n = 3 10⁸ / 1.6 10⁸
n = 1,875