Answer:
Explanation:
A Spring stretches / compresses when force is applied on them and they are governed by the Hookes Law which states that the force required to stretch or compress a spring is directly proportional to the distance it is stretched.

F is the force applied and x is the elongation of the spring
k is the spring constant.
negative sign indicates the change in direction from equilibrium position.
In the given question, we dont have force but we know that the pan is hanging. We also know from the Newton's second law of motion that

Inserting this into Hooke's Law

computing it for x,

This is the model which will tell the length of the spring against change in the mass located in the pan.
Finding acceleration= final velocity-initial velocity/ time taken (or A= V-U/T)
Final speed= 2m
Initial speed= 0m
Time taken= 2 seconds
2-0/2 so it’ll be 1m/s
2-0=0
2/2=
A beat is an interference pattern between two sounds of slightly different frequencies, perceived as a periodic variation in volume whose rate is the difference of the two frequencies. Frequency beat is equal to,

The reference frequency in our case would be 392Hz, and since there is the possibility of the upper and lower range for the amount of beats per second that the two possible frequencies are heard would be


Therefore the two possible frequencies the piano wire is vibrating at, would be 396Hz and 388Hz
That's what scientists and other technical people call the object's "<em>volume</em>".
The density of the object is approximately 1.91 kg per m³.
42 kg is a measure of mass, and 22 m³ is a measure of volume. Knowing this, you can use the relationship

to solve for the object's density.
42 kg

22 m³

1.91 kg per m³.