Answer:
NaHCO3 sodium bicarbonate is baking soda; added to the acetic acid, it forms sodium acetate (aqueous), CO2 gas & water. Remove the water & solid sodium acetate remains.
Explanation:
The density is 3.144 g / cm^3.
<u>Explanation</u>:
If effective number of atom in NaCl type structure, z = 4
a = 705.2 pm ⇒ In centimeter = 705.2
10^-10
Na = 6.023
10^23
density = (molecular weight) (z) / (Na) (a^3)
where molecular weight of KI is 166 g,
Z represents the atomic number
density = (molecular weight) (z) / (Na) (a^3)
= (166
4) / (6.023
10^23)
(705.2
10^-10)
density = 3.144 g / cm^3.
Leah's experiment:
A. Takes careful and regular measurements (she measures the growth every day)
B. Has a specific hypothesis and a controlled experiment (the music is the only changing variable, the growth conditions are identical, and this is what she wants to test in her hypothesis)
C. Experimental data that can be recorded and analyzed (measuring the growth of plant fits this)
So the answer must be D, since there is no mention of past research that scientists have found on this topic.
Answer:
For this experiment we are going to take plate 1 as the control plate, so, in it there will be just E. coli in LB/agar; in plate 2, we are going to put E. coli in LB/agar and some ampicillin. Then, we have to wait for the E. coli colonies to form. After a while, the E. coli growth can be compared on both plates and determine if ampicillin affects or not the E. coli colonies.
Explanation:
If the ampicillin affects negatively E. coli colonies, we are going to observe that in plate 1 (control plate) there are E. coli colonies growing, but in plate 2, there is no E. coli colonies or, at least, there is a fewer number of colonies on it. If ampicillin doesn't affect E.coli, plate 1 (control) and plate 2 (ampicillin experiment) are going to be similar in number of colonies.
Protons goes in the blank. the word can be used for both.