Answer:
Explanation:
Force of friction at car B ( break was applied by car B ) =μ mg = .65 x 2100 X 9.8 = 13377 N .
work done by friction = 13377 x 7.30 = 97652.1 J
If v be the common velocity of both the cars after collision
kinetic energy of both the cars = 1/2 ( 2100 + 1500 ) x v²
= 1800 v²
so , applying work - energy theory ,
1800 v² = 97652.1
v² = 54.25
v = 7.365 m /s
This is the common velocity of both the cars .
To know the speed of car A , we shall apply law of conservation of momentum .Let the speed of car A before collision be v₁ .
So , momentum before collision = momentum after collision of both the cars
1500 x v₁ = ( 1500 + 2100 ) x 7.365
v₁ = 17.676 m /s
= 63.63 mph .
( b )
yes Car A was crossing speed limit by a difference of
63.63 - 35 = 28.63 mph.
Answer:
they are constantly bouncing everywhere and creating preasure
Explanation:
Answer: C REFRACTION
Explanation: I took the test and got it right lol <3
Answer:
<h2>918,750 J</h2>
Explanation:
The kinetic energy of an object can be found by using the formula

m is the mass in kg
v is the velocity in m/s
From the question
m = 1500 kg
v = 35 m/s
We have

We have the final answer as
<h3>918,750 J</h3>
Hope this helps you
Answer:
r1 -r2 = 3.75cm
Explanation:
Check the attached file for the solution