The answer is B) <span>equilibrium
hope this helps!=-)</span>
<em>Energy</em><em> </em><em>can</em><em> </em><em>neither </em><em>be</em><em> </em><em>created </em><em>nor</em><em> </em><em>be</em><em> </em><em>destroyed</em><em> </em><em>but</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>converted</em><em> </em><em>from</em><em> </em><em>one</em><em> </em><em>form</em><em> </em><em>to</em><em> </em><em>another </em><em>.</em>
Answer:
EXplained
Explanation:
from conservation of energy
change in potential energy = gain in kinetic energy
so as all he balls are throws from the same height thus the change in potential energy is the same for all the balls thus the gain in kinetic energy is the same for all the balls and as they have the same initial velocity thus the final velocity is the same for all the balls.
A. Impulse is simply the product of Force and time.
Therefore,
I = F * t --->
1
where I is impulse, F is force, t is time
However another formula for solving impulse is:
I = m vf – m vi --->
2
where m is mass, vf is final velocity and vi is initial
velocity
Therefore using equation 2 to solve for impulse I:
I = 2000kg (0) – 2000kg (77 m/s)
I = -154,000 kg m/s
B. By conservation of momentum, we also know that Impulse
is conserved. That means that increasing the time by a factor of 3 would still
result in an impuse of -154,000 kg m/s. So,
I = F’ * (3 t) = -154,000 kg m/s
Since t is multiplied by 3, therefore this only means
that Force is decreased by a factor of 3 to keep the impulse constant,
therefore:
(F/3) (3t) = -154,000 kg m/s
Summary of Answers:
A. I = -154,000 kg m/s
B. Force is decreased by factor of 3