Answer:
y <8 10⁻⁶ m
Explanation:
For this exercise, they indicate that we use the Raleigh criterion that establishes that two luminous objects are separated when the maximum diffraction of one of them coincides with the first minimum of the other.
Therefore the diffraction equation for slits with m = 1 remains
a sin θ = λ
in general these experiments occur for oblique angles so
sin θ = θ
θ = λ / a
in the case of circular openings we must use polar coordinates to solve the problem, the solution includes a numerical constant
θ = 1.22 λ / a
The angles in these measurements are taken in radians, therefore
θ = s / R
as the angle is small the arc approaches the distance s = y
y / R = 1.22 λ / s
y = 1.22 λ R / a
let's calculate
y = 1.22 500 10⁻⁹ 0.42 / 0.032
y = 8 10⁻⁶ m
with this separation the points are resolved according to the Raleigh criterion, so that it is not resolved (separated)
y <8 10⁻⁶ m
Answer:
Thus, the time for the first lamp is 44 minutes.
Explanation:
Power of first lamp, P' = 1000 W
Power of second lamp, P'' = 4400 W
time for second lamp, t'' = 10 minutes
Let the time for first lamp is t'.
As the energy is same, so,
P' x t' = P'' x t''
1000 x t' = 4400 x 10
t' = 44 minutes
<span>One thousand grams of seawater has 35 grams of dissolved substances ... on the average. While the salinity of the Earth's oceans and seas varies, the average salinity of seawater rests at 3.5%. Consider one liter or sea or ocean water. One liter has 1,000 milliliters (mL) in it. To find 3.5% of 1,000, we would multiply with the decimal place adjusted for percentages: 1000 x .035 = 35. Therefore, for every 1,000 mL of seawater, we will find 35 grams of (mostly) sodium chloride, otherwise known as salt.</span>
Answer:
0.368 cm
Explanation:
x = distance by which the mercury rise
d = depth of the water = 10 cm = 0.10 m
ρ = density of water = 1000 kgm⁻³
ρ' = density of mercury = 13600 kgm⁻³
P₀ = atmospheric pressure
Using equilibrium of pressure on both side
P₀ + ρ g d = P₀ + ρ' g (2x)
(1000) (0.10) = (13600) (2x)
x = 0.00368 m
x = 0.368 cm