Johannes Kepler was a main stargazer of the Scientific Revolution known for detailing the Laws of Planetary Motion. A stargazer, obviously, is a man who contemplates the sun, stars, planets and different parts of room. Kepler was German and lived in the vicinity of 1571 and 1630.
Despite the fact that Kepler is best known for characterizing laws in regards to planetary movement, he made a few other striking commitments to science. He was the first to discover that refraction drives vision in the eye and that utilizing two eyes empowers profundity recognition.
Hi there!

Use the equation:

Where m2 and v2 deal with the larger object, and m1 and v1 with the smaller object. Plug in the given values:
v2 = ?
m1 = 0.048 kg (converted)
m2 = 2.95
v1 = 391


Answer:
P₁ = 2.215 10⁷ Pa, F₁ = 4.3 106 N,
Explanation:
This problem of fluid mechanics let's start with the continuity equation to find the speed of water output
Q = A v
v = Q / A
The area of a circle is
A = π r² = π d² / 4
Let's look at the speeds at each point
v₁ = Q / A₁ = Q 4 /π d₁²
v₁ = 10 4 /π 0.5²
v₁ = 50.93 m / s
v₂ = Q / A₂
v₂ = 10 4 /π 0.25²
v₂ = 203.72 m / s
Now we can use Bernoulli's equation in the colon
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
Since the tube is horizontal y₁ = y₂. The output pressure is P₂ = Patm = 1.013 10⁵ Pa, let's clear
P₁ = P2 + ½ rho (v₂² - v₁²)
P₁ = 1.013 10⁵ + ½ 1000 (203.72² - 50.93²)
P₁ = 1.013 10⁵ + 2.205 10⁷
P₁ = 2.215 10⁷ Pa
la definicion de presion es
P₁ = F₁/A₁
F₁ = P₁ A₁
F₁ = 2.215 10⁷ pi d₁²/4
F₁ = 2.215 10⁷ pi 0.5²/4
F₁ = 4.3 106 N
Answer:
By the use of slow motion camera.
Explanation:
Visually, it is very hard to differentiate between an ac and dc power supply. But Since, we that In Ac supply polarity changes 100 times in a second ( because frequency of ac supply is 50 Hz generally). Whereas, Dc gives a steady power supply. So, in slow motion camera we can easily capture the flickering light tubes which won't happen in case of dc supply.