Your measurement implies that the range of answers is 128.6 mL to 128.8 mL.
If you do not state explicitly the range of uncertainty (e.g., ± 0.5 mL), the <em>implied range of uncertainty</em> is ±1 in the last significant digit.
Thus, a reading of 128.7 mL implies that the volume is 128.7 mL ± 0.1 mL.
The balanced equation for the above reaction is
2K₃PO₄ + 3NiCl₂ ---> 6KCl + Ni₃(PO₄)₂
stoichiometry of K₃PO₄ to NiCl₂ is 2:3
the number of NiCl₂ moles reacted - 0.0110 mol/L x 0.154 L = 1.69 x 10⁻³ mol
if 3 mol of NiCl₂ reacts with - 2 mol of K₃PO₄
then 1.69 x 10⁻³ mol of NiCl₂ reacts with - 2/3 x 1.69 x 10⁻³ = 1.13 x 10⁻³ mol of K₃PO₄
molarity of K₃PO₄ solution given - 0.205 M
there are 0.205 mol in 1 L
therefore 1.13 x 10⁻³ mol are in - 1.13 x 10⁻³ mol / 0.205 mol/L = 5.51 mL
volume of K₃PO₄ required - 5.51 mL
Noble gases' outer shells are already filled with 8 electrons (other than He, which has 2, but is still filled and stable). Atoms bond with other elements to fill their outer shell, but they don't need to do that and are already stable.
Each one is a living organism.
Answer:
Do you have a picture of this?