Answer:
The only PH range which is not covered by any of the given components of the universal indicator is 7.6-8.0
Hence the PH range 7.6-8 can't be described using universal indicator.
The question above is incomplete, the full question is given below:
What additional test would be needed to establish the exact position of hydrogen in the activity series of the following elements: magnesium, zinc, lead, copper and silver.
ANSWER
The position of hydrogen on a reactivity series can be determined by its ability to displace oxygen from the oxide of the metal concerned. If hydrogen is more reactive than a metal, it will displace oxygen from the metal oxide and reduce the metal oxide to its metal. If the metal is more reactive than hydrogen, hydrogen will not be able to reduce the metal oxide to its metal.
Answer:
tha mass of magnesium nitrate is 592g
Explanation:
from a balanced chemical equation
2HNO3 + Mg(OH)2→ Mg(NO3)2 + 2H2O
2 mol of nitric acid is equivalent to 1 mol of magnesium nitrate. then 8 mol of nitric acid will be equivalent to 4 mol of magnesium nitrate.
<em>Answer :</em> 72.05 g/mol
<span>
<em>Explanation : </em>
Let's </span>assume that the given gas is an ideal gas. Then we can use ideal gas equation,<span>
PV = nRT<span>
</span>
Where,
P = Pressure of the gas (Pa)
V = volume of the gas (m³)
n = number of moles (mol)
R = Universal gas constant (8.314 J mol</span>⁻¹ K⁻¹)<span>
T = temperature in Kelvin (K)
<span>
The given data for the gas </span></span>is,<span>
P = 777 torr = 103591 Pa
V = </span>125 mL = 125 x 10⁻⁶ m³<span>
T = (</span>126 + 273<span>) = 399 K
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
n = ?
By applying the formula,
103591 Pa x </span>125 x 10⁻⁶ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 399 K<span>
n = 3.90 x 10</span>⁻³<span> mol
</span>Moles (mol) = mass (g) /
molar mass (g/mol)<span>
Mass of the gas = </span><span>0.281 g
</span>Moles of the gas = 3.90 x 10⁻³ mol
<span>Hence,
molar mass of the gas = mass / moles
= 0.281 g / </span>3.90 x 10⁻³ mol
<span> = 72.05 g/mol
</span>
Answer:
kf = 1.16 x 10¹⁸
Explanation:
Step 1: [Ni(H₂O)₆]²⁺ + 1en → [Ni(H₂O)₄(en)]²⁺ ΔG°1 = -42.9 kJmol⁻¹
Step 2: [Ni(H₂O)₄(en)]²⁺ + 1en → [Ni(H₂O)₂(en)₂]²⁺ ΔG°2 = -35.8 kJmol⁻¹
Step 3: [Ni(H₂O)₂(en)₂]²⁺ + 1en → [Ni(en)₃]²⁺ ΔG°3 = -24.3 kJmol⁻¹
________________________________________________________
Overall reaction: [Ni(H₂O)₆]²⁺ + 3en → [Ni(en)₃]²⁺ ΔG°r
ΔG°r = ΔG°1 + ΔG°2 + ΔG°3
ΔG°r = -42.9 - 35.8 - 24.3
ΔG°r = -103.0 kJmol⁻¹
ΔG°r = -RTlnKf
-103,000 Jmol⁻¹ = - 8.31 J.K⁻¹mol⁻¹ x 298 K x lnKf
kf = e ^(-103,000/-8.31x298)
kf = e ^41.59
kf = 1.16 x 10¹⁸