You have 3 (h2(so4)) on the reactants side so you need to have 6 total hydrogen’s on the products side. Therefore 3(h2) is required.
Hydrogen (H) was first, followed by helium (He).
Answer:
B 1.23 g/cc
Explanation:
For something to float on seawater, the density must be less than 1.03 g/mL. If the object sinks, the density is greater than 1.03 g/mL.
Let’s examine the answer choices. Keep in mind, the ice berg is mostly below the water level.
A. 0.88 g/cc
This is less than 1.03 g/cc, which would result in floating.
B. 1.23 g/cc
This is the best answer choice. The iceberg is mostly beneath the water, but some of it is exposed. The density is greater than 1.03 g/mL, but not so much greater that it would immediately sink.
C. 0.23 g/cc
This is less than 1.03 g/cc, which would produce floating.
D. 4.14 g/cc
This is much greater than 1.03 g/cc and the result would be sinking.
Based on the calculations, the approximate ductility (%el) of this brass is equal to 2.3%.
<u>Given the following data:</u>
- Yield strength = 230 mpa (33360 psi).
<h3>What is ductility?</h3>
Ductility can be defined as an important property of a material which determines its ability to become elongated due to the application of stress.
Mathematically, the ductility of a material can be expressed as percentage elongation in length:

<u>Where:</u>
is the original length.
is the final length.
is the yield strength.
For this exercise, let us assume the original length of this brass is equal to 100 meters.
Substituting the parameters into the formula, we have;

Ductility = 2.3%.
Read more on ductility here: brainly.com/question/828860