1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maxonik [38]
3 years ago
15

Emma is running for the bus. She runs 100 metres in 25 seconds. Calculate her speed

Physics
2 answers:
Afina-wow [57]3 years ago
8 0

Answer:

25km/h

is that the full question

beks73 [17]3 years ago
6 0
Speed = distance/time

s=d/t

s=100/25 = 4m/s

4m/s = 14.4kph (km/h)
You might be interested in
Calculate the net force on the right charge due to the other two. Enter a positive value if the force is directed to the right a
lbvjy [14]

Answer:

Answer:

A. - 0.017N. It acts to the left.

B. - 0.043N. It acts to the left.

C. 0.060N. It acts to the right.

Explanation:

A. For the +65μC charge, we consider it to be the origin. Hence, the two other charges are on the +x axis.

The net coulombs force on the charge is

F = [KQ(1)Q(2)]/(r^2) + [KQ(1)Q(3)]/(r^2)

Where K = Coloumbs constant =

Q(1) = charge on the leftmost side.

Q(2) = charge in the middle.

Q(3) = charge on the rightmost side.

F = [(8.988 × 10^9)×(65×10^-6)×(48×10^-6)]/(40^2) + [(8.988 × 10^9)×(-95×10^-6)×(65×10^-6)]/(40^2)

F = 0.01753 - 0.03469

F = -0.017N

It has a negative sign, hence, it acts to the left.

B. For the +48μC charge, we consider it to be the origin. Hence, the leftmost charge is on the - x axis and the rightmost charge is on the +x axis.

The net coulombs force on the charge is

F = [-KQ(1)Q(3)]/(r^2) + [KQ(2)Q(3)]/(r^2)

F = [-(8.988×10^9)×(65×10^-6)×(48×10^-6)]/(40^2) + [(8.988 × 10^9)×(48×10^-6)×(-95×10^-6)]/(40^2)

F = -0.017 - 0.02562

F = - 0.043N

It has a negative sign, hence, it acts to the left.

C. For the -95μC charge, we consider it to be the origin. Hence, the two other charges are on the - x axis.

The net coulombs force on the charge is

F = [-KQ(1)Q(3)]/(r^2) - [KQ(2)Q(3)]/(r^2)

F = [-(8.988×10^9)×(65×10^-6)×(-95×10^-6)]/(40^2) - [(8.988 × 10^9)×(48×10^-6)×(-95×10^-6)]/(40^2)

F = +0.03469 + 0.02562

F = +0.060N

It has a positive sign, hence, it acts to the right.

Read more on Brainly.com - brainly.com/question/14592748#readmore

Explanation:

5 0
4 years ago
Water being turned into ice cubes in a freezer is an example of _____.
Gekata [30.6K]

Answer:

a physical change

Explanation:

after the water turns to ice, it will melt and became water again making which means it's reversible this being. a physical change

7 0
2 years ago
Read 2 more answers
Which is the correct unit for electrical power?<br> a) amp<br> b) volt<br> c) watt<br> d) coulomb
musickatia [10]
T<span>he correct unit for electrical power is "watt".
</span>

That<span>’s actually the unit that measures the rate per time that electric energy is transferred.</span>

<span>
</span>

<span>Have a nice day! :)</span>

8 0
3 years ago
Read 2 more answers
What study did james e hansen focus on
Brut [27]
James E. Hansen studied climate change
6 0
2 years ago
Read 2 more answers
A freshly prepared sample of radioactive isotope has an activity of 10 mCi. After 4 hours, its activity is 8 mCi. Find: (a) the
Maurinko [17]

Answer:

(a). The decay constant is 1.55\times10^{-5}\ s^{-1}

The half life is 11.3 hr.

(b). The value of N₀ is 2.38\times10^{11}\ nuclei

(c). The sample's activity is 1.87 mCi.

Explanation:

Given that,

Activity R_{0}=10\ mCi

Time t_{1}=4\ hours

Activity R= 8 mCi

(a). We need to calculate the decay constant

Using formula of activity

R=R_{0}e^{-\lambda t}

\lambda=\dfrac{1}{t}ln(\dfrac{R_{0}}{R})

Put the value into the formula

\lambda=\dfrac{1}{4\times3600}ln(\dfrac{10}{8})

\lambda=0.0000154\ s^{-1}

\lambda=1.55\times10^{-5}\ s^{-1}

We need to calculate the half life

Using formula of half life

T_{\dfrac{1}{2}}=\dfrac{ln(2)}{\lambda}

Put the value into the formula

T_{\dfrac{1}{2}}=\dfrac{ln(2)}{1.55\times10^{-5}}

T_{\dfrac{1}{2}}=44.719\times10^{3}\ s

T_{\dfrac{1}{2}}=11.3\ hr

(b). We need to calculate the value of N₀

Using formula of N_{0}

N_{0}=\dfrac{3.70\times10^{6}}{\lambda}

Put the value into the formula

N_{0}=\dfrac{3.70\times10^{6}}{1.55\times10^{-5}}

N_{0}=2.38\times10^{11}\ nuclei

(c). We need to calculate the sample's activity

Using formula of activity

R=R_{0}e^{-\lambda\times t}

Put the value intyo the formula

R=10e^{-(1.55\times10^{-5}\times30\times3600)}

R=1.87\ mCi

Hence, (a). The decay constant is 1.55\times10^{-5}\ s^{-1}

The half life is 11.3 hr.

(b). The value of N₀ is 2.38\times10^{11}\ nuclei

(c). The sample's activity is 1.87 mCi.

4 0
3 years ago
Other questions:
  • A nurse counts 66 heartbeats in one minute. What is the period of the hearts oscillation? In minutes
    12·1 answer
  • A narrow beam of light containing red (660 nm) and blue (470 nm) wavelengths travels from air through a 2.60 cm thick flat piece
    13·1 answer
  • A 0.45 kg soccer ball changes its velocity by 20.0 m/s due to a force applied to it in 0.10 seconds. What force was necessary fo
    9·2 answers
  • Could someone ples help
    11·2 answers
  • A 25.0-gram bullet enters a 2.25-kg watermelon with a speed of 220 m/s and exits the opposite side with a speed of 110 m/s. If t
    5·1 answer
  • What are the answers to #1 and #2?
    15·1 answer
  • The 1800 kg tractor exerts a force of 1.95 104 N backward on the pavement, and the system experiences forces resisting motion th
    13·1 answer
  • Newtons first law stateS that object will move With a constant velocity if nothing acts on it. Does our every day experience con
    14·1 answer
  • Two forces with magnitudes of 6 pounds and 18 pounds are applied to an object. The magnitude of the resultant is 13 pounds. Find
    10·1 answer
  • A small car with mass of 0.800 kg travels at a constant speed
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!