Chlorine gas or just chlorine?
Question
A banked highway is designed for traffic moving at v 8 km/h. The radius of the curve = 330 m. 50% Part (a) Write an equation for the tangent of the highway's angle of banking. Give your equation in terms of the radius of curvature r, the intended speed of the turn v, and the acceleration due to gravity g
Part (b) what is the angle of banking of the highway? Give your answer in degrees
Answer:
a. Equation of Tangent
tan(θ) = v²/rg
b. Angle of the banking highway
θ = 0.087°
Explanation:
Given
Radius of the curve = r = 330m
Acceleration of gravity = g = 9.8m/s²
Velocity = v = 8km/h = 8 * 1000/3600
v = 2.22 m/s
a . Write an equation for the tangent of the highway's angle of banking
The Angle is calculated by
tan(θ) = v²/rg
θ = tan-1(v²/rg)
b.
Part (b) what is the angle of banking of the highway? Give your answer in degrees
θ = tan-1(v²/rg)
Substituting the values of v,g and r
θ = tan-1(2.22²/(330 * 9.8)
θ = tan-1(0.001523933209647)
θ = 0.087314873580116°
θ = 0.087°
Answer:
F= 0
Explanation:
This exercise we use Newton's second law,
F = m a
in this case as the speed is constant the acceleration is zero therefore the force is zero.
Change we can solve it using Newton's first law, which states that every vehicle remains still or with constant speed if there is no extensive outside acting on it
We see that with any of the two forms the sum of the applied forces is zero
∑ F = 0
Sometimes scientists make a mistake or Miscalculate and need to do the experiment again.
Answer:
Capacitor, is the right answer.
Explanation:
The unknown element is a Capacitor.
Below is the calculation that proves that it is a capacitor.
We know that for the Capacitor
i = Imax × sin(wt+(pi/2)).
i = Imax × sin ((2 × pi/T) × (T/4) + (pi/2))
i = Imax × sin(3.142) = 0 A
at, t = T/2
wt = (2 × pi/T) × (T/2) = pi
wt + (pi/2) = pi + (pi/2) = ( 3 × pi/2) =
i = Imax × sin(3 × pi/2) = -Imax
Which is in a correct agreement with capacitor therefore, the answer is a Capacitor.