Answer:
The resistance that will provide this potential drop is 388.89 ohms.
Explanation:
Given;
Voltage source, E = 12 V
Voltage rating of the lamp, V = 5 V
Current through the lamp, I = 18 mA
Extra voltage or potential drop = 12 V - 5 V = 7 V
The resistance that will provide this potential drop (7 V) is calculated as follows:

Therefore, the resistance that will provide this potential drop is 388.89 ohms.
The kinetic energy with which the hammer strikes the ground
is exactly the potential energy it had at the height from which it fell.
Potential energy is (mass) x (gravity) x (height) .... directly proportional
to height.
Starting from double the height, it starts with double the potential
energy, and it reaches the bottom with double the kinetic energy.
Answer:
7/150
Explanation:
The following data were obtained from the question:
Object distance (u) = 75cm
Image distance (v) = 3.5cm
Magnification (M) =..?
Magnification is simply defined as:
Magnification (M) = Image distance (v)/ object distance (u)
M = v /u
With the above formula, we can obtain the magnification of the image as follow:
M = v/u
M = 3.5/75
M = 7/150
Therefore, the magnification of the image is 7/150.
Answer:
B. Radiowaves
Explanation:
Radiowaves are on the higher end of the spectrum, then infrared, visible light, and UV light (which is the lowest energy)