Answer:19.32 m/s
Explanation:
Given
initial speed of car(u)=4.92 m/s
acceleration(a)=
Speed of car after 4.5 s
using equation of motion
v=u+at

v=19.32 m/s
Displacement of the car after 4.5 s



s=54.54 m
<span>For a point mass the moment of inertia is just
the mass times the square of perpendicular distance to the rotation axis, I =
mr^2. That point mass relationship becomes the basis for all other moments of
inertia since any object can be built up from a collection of point masses. So the
I = (1.2 kg)(0.66m/2)^2 = 0.1307 kg m2</span>
The force required to slow the truck was -5020 N
Explanation:
First of all, we find the acceleration of the truck, which is given by

where
v is the final velocity
u is the initial velocity
t is the time
For the truck in this problem,
v = 11.5 m/s
u = 21.9 m/s
t = 2.88 s
So the acceleration is

where the negative sign means that this is a deceleration.
Now we can find the force exerted on the truck, which is given by Newton's second law:

where
m = 1390 kg is the mass of the truck
is the acceleration
And substituting,

So the closest answer among the option is -5020 N.
Learn more about acceleration and forces:
brainly.com/question/11411375
brainly.com/question/1971321
brainly.com/question/2286502
brainly.com/question/2562700
#LearnwithBrainly
Answer:
Convection is heat transfer through the movement of liquids and gases.
Explanation:
M₂ = Fr²/GM₁
M₂ = [(132N)(.243m)²]/[(6.67*10^-11N*m²/kg)(1.175*10^4kg)]
M₂ = (7.79N*m²)/(7.84*10^-7N*m²)
M₂ = 9.94*10^6 kg