The answer is 789.25 which you’d subtract 2011.25-122.2 I think sry if I’m wrong
Answer:
The frequency of the oscillation is 2.45 Hz.
Explanation:
Given;
mass of the spring, m = 0.5 kg
total mechanical energy of the spring, E = 12 J
Determine the spring constant, k as follows;
E = ¹/₂kA²
kA² = 2E
k = (2E) / (A²)
k = (2 x 12) / (0.45²)
k = 118.519 N/m
Determine the angular frequency, ω;
Determine the frequency of the oscillation;
ω = 2πf
f = (ω) / (2π)
f = (15.396) / (2π)
f = 2.45 Hz
Therefore, the frequency of the oscillation is 2.45 Hz.
B is your answer oscillating
The type of relationship between atmospheric density and altitude is therefore inverse relationship. This means an increase in either will decrease the other factor. Density is mass per unit volume, it is difficult to calculate with only altitude 1,291 kilometers given. Else, we could also use temperature and pressure to solve density but they are not provided.
<span>The star's main fuel during its lifetime is hydrogen. It is said that a star is composed of 97% hydrogen and 3% helium. Once the hydrogen of a star is gone, the star becomes old because it burns hydrogen during its lifetime.</span>