Answer: 2.13 × 10⁻⁷ N
Explanation:
Gravitational force exists between any two bodies having mass.
Force of gravity is given by:

It is given that, mass of newborn baby is M = 2.50 kg
Mass of the doctor, m = 80.0 kg
Distance between the two, r = 0.250 m
Gravitational constant, G = 6.67 × 10⁻¹¹ N m²/kg²
⇒F = (6.67 × 10⁻¹¹ N m²/kg² × 2.50 kg × 80.0 kg )÷ (0.250 m)² = 2.13 × 10⁻⁷ N
Thus, the force of gravity between new born baby and doctor is 2.13 × 10⁻⁷ N.
Answer:
The value is 
Explanation:
From the question we are told that
The initial pressure is
The initial temperature is ![T_1 = 50 \ F = (50 - 32) * [\frac{5}{9} ] + 273 = 283 \ K](https://tex.z-dn.net/?f=T_1%20%3D%20%2050%20%5C%20F%20%3D%20%2850%20-%2032%29%20%2A%20%5B%5Cfrac%7B5%7D%7B9%7D%20%5D%20%2B%20273%20%3D%20283%20%20%5C%20%20K)
The final temperature is ![T_2 = 320 \ F = (320 - 32) * [\frac{5}{9} ] + 273 =433 \ K](https://tex.z-dn.net/?f=T_2%20%3D%20%20320%20%5C%20F%20%3D%20%28320%20-%2032%29%20%2A%20%5B%5Cfrac%7B5%7D%7B9%7D%20%5D%20%2B%20273%20%3D433%20%20%5C%20%20K)
Generally the equation for adiabatic process is mathematically represented as

=> 
Generally for a monoatomic gas 
So
![14 * 283^{\frac{\frac{5}{3} }{1- [\frac{5}{3} ]} } =P_2 * 433^{\frac{\frac{5}{3} }{1- [\frac{5}{3} ]} }](https://tex.z-dn.net/?f=14%20%2A%20283%5E%7B%5Cfrac%7B%5Cfrac%7B5%7D%7B3%7D%20%7D%7B1-%20%5B%5Cfrac%7B5%7D%7B3%7D%20%5D%7D%20%7D%20%3DP_2%20%2A%20433%5E%7B%5Cfrac%7B%5Cfrac%7B5%7D%7B3%7D%20%7D%7B1-%20%5B%5Cfrac%7B5%7D%7B3%7D%20%5D%7D%20%7D)
=> 
=> 
If you multiply m (the unit for wavelength) with 1s (the unit for frequency), you will get m/s, the unit for speed. Now multiply! 25 m/s is your final answer!
You would need to use the equation a= (v-u)÷t
You need to substitute in the correct numbers.
a= (10-20)÷1
Your answer is -10m/s^2
Explanation:
(a) Draw a free body diagram of the cylinder at the top of the loop. At the minimum speed, the normal force is 0, so the only force is weight pulling down.
Sum of forces in the centripetal direction:
∑F = ma
mg = mv²/RL
v = √(g RL)
(b) Energy is conserved.
EE = KE + RE + PE
½ kd² = ½ mv² + ½ Iω² + mgh
kd² = mv² + Iω² + 2mgh
kd² = mv² + (m RC²) ω² + 2mg (2 RL)
kd² = mv² + m RC²ω² + 4mg RL
kd² = mv² + mv² + 4mg RL
kd² = 2mv² + 4mg RL
kd² = 2m (v² + 2g RL)
d² = 2m (v² + 2g RL) / k
d = √[2m (v² + 2g RL) / k]