Answer:

Explanation:
The constant speed means that ball is not experimenting acceleration. This elements is modelled by using the following equation of equilibrium:


Now, the exerted force is:

The volume of a sphere is:



Lastly, the force is calculated:


Answer:
Explanation:
a) 1.00 - 0.12 = 0.88
m = 1200(0.88)^t
b) t = ln(m/1200) / ln(0.88)
c) m = 1200(0.88)^10 = 334.20 g
d) t = ln(10/1200) / ln(0.88) = 37.451... = 37 s
e) t = ln(1/1200) / ln(0.88) = 55.463... = 55 s
Answer:

Given:
Mass of the polar bear (m) = 6.8 kg
Speed of the polar bear (v) = 5.0 m/s
To Find:
Kinetic energy of the polar bear (KE)
Explanation:
Formula:

Substituting values of m & v in the equation:





Kinetic energy of the polar bear (KE) = 23002.1 J
Answer:
<em>A) Beam B carries twice as many photons per second as beam A.</em>
Explanation:
If we have two waves with the same wavelength, then their intensity is proportional to their power, or the energy per unit time.
We also know that the amount of photon present in an electromagnetic beam is proportional to the energy of the beam, hence the amount of beam per second is proportional to the power.
With these two facts, we can say that the intensity is a measure of the amount of photon per second in an electromagnetic beam. So we can say that <em>beam B carries twice as more power than beam A, or Beam B carries twice as many photons per second as beam A.</em>
The answer is the last choice.
Its electrical potential energy stays the same because it has the same electric potential. The reason why is that moving the charge towards X does not change the distance of the negative charge between the plates. The Electrical potential energy of a particle is the result energy by virtue of its position from the electrical fields produce by the plates both positive and negative. Since the charge is still equidistant to each other (assuming based from the diagram) no change in terms of electrical energy consumption or work was done.