To solve this problem we will begin by finding the necessary and effective distances that act as components of the centripetal and gravity Forces. Later using the same relationships we will find the speed of the body. The second part of the problem will use the equations previously found to find the tension.
PART A) We will begin by finding the two net distances.

And the distance 'd' is



Through the free-body diagram the tension components are given by


Here we can watch that,

Dividing both expression we have that,

Replacing the values,


PART B) Using the vertical component we can find the tension,




Explanation:
The chemical properties of an element are determined by the configuration of its electrons in orbit around its nucleus. ... See a Periodic Table of the Elements. The number of protons in the nucleus of an atom is its Atomic Number.
Answer:
104 N
Explanation:
Calculate the spring stiffness:
F = kx
32.5 N = k (0.500 cm)
k = 65 N/cm
Find the force for the new length:
F = kx
F = (65 N/cm) (1.60 cm)
F = 104 N
Using the Hubble law v = H₀d where v = recessional speed = 70,000 km per second H₀ = hubble constant = 70 km/s/Mpc and d = distance of galaxy.
Making d subject of the formula, we have
d = v/H₀
Substituting the values of the variables into the equation, we have
d = v/H₀
d = 70000 km/s/70 km/s/Mpc
d = 1000 Mpc
So, the galaxy is 1000 Mpc away from us.
Learn more about hubble law here:
brainly.com/question/18484687
Answer and Explanation:
Hydrostatic equilibrium is the condition in which force is balance that is upward force and downward force the downward force is due to gravitational force and the upward force is due to the pressure. The Sun is said to be in hydrostatic equilibrium means the force acting on it is balance means upward force which is due to pressure is same as the force exerted by gravitation.