Answer:
(a) 0.177 m
(b) 16.491 s
(c) 25 cycles
Explanation:
(a)
Distance between the maximum and the minimum of the wave = 2A ............ Equation 1
Where A = amplitude of the wave.
Given: A = 0.0885 m,
Distance between the maximum and the minimum of the wave = (2×0.0885) m
Distance between the maximum and the minimum of the wave = 0.177 m.
(b)
T = 1/f ...................... Equation 2.
Where T = period, f = frequency.
Given: f = 4.31 Hz
T = 1/4.31
T = 0.23 s.
If 1 cycle pass through the stationary observer for 0.23 s.
Then, 71.7 cycles will pass through the stationary observer for (0.23×71.7) s.
= 16.491 s.
(c)
If 1.21 m contains 1 cycle,
Then, 30.7 m will contain (30.7×1)/1.21
= 25.37 cycles
Approximately 25 cycles.
- The wavelength of the red light in "nanometer" is 7×

- Wavelength is given as : 7×
meter
- 1 nanometer = (
meter)
- Let X= value of the wavelength in nanometer.
1 nanometer =
meter
X nanometer = 7×
meter
- <em>If we Cross multiply</em>
X nanometer = (
)
X= 7×
nanometer
Therefore, the wavelength in "nanometer" is 7×
Learn more at :brainly.com/question/12924624?referrer=searchResults
Answer:
0.0667 m
Explanation:
λ = wavelength of light = 400 nm = 400 x 10⁻⁹ m
D = screen distance = 2.5 m
d = slit width = 15 x 10⁻⁶ m
n = order = 1
θ = angle = ?
Using the equation
d Sinθ = n λ
(15 x 10⁻⁶) Sinθ = (1) (400 x 10⁻⁹)
Sinθ = 26.67 x 10⁻³
y = position of first minimum
Using the equation for small angles
tanθ = Sinθ = y/D
26.67 x 10⁻³ = y/2.5
y = 0.0667 m
Answer:
a. 2143 turns/m
b. 111.5 m
Explanation:
a. The minimum number of turns per unit length (N/L) can be found using the following equation:


Hence, the minimum number of turns per unit length is 2143 turns/m.
b. The total length of wire is the following:

Since each turn has length 2πr of wire, the total length is:

Therefore, the total length of wire required is 111.5 m.
I hope it helps you!