The echo is heard 2.80 s later, this means this is the time the sound takes to travel to the reflecting object and then back to us. So, during this time, the sound wave has covered the distance L between us and the object twice:

The speed of the sound wave is:

, and since it is moving by uniform motion, we can find the distance covered by the wave using

And we said this corresponds to twice the distance between us and the reflecting object, so:

so, the object is 480 meters away.
Answer:
<h3>Because one Coulomb of charge is an abnormally large quantity of charge, the units of microCoulombs (µC) or nanoCoulombs (nC) are more commonly used as the unit of measurement of charge. To illustrate the magnitude of 1 Coulomb, an object would need an excess of 6.25 x 1018 electrons to have a total charge of -1 C.</h3>
Explanation:
<h3><em><u>mark as brainliast</u></em></h3><h3><em><u>indian </u></em><em><u>genius </u></em><em><u>s</u></em><em><u>a</u></em><em><u>r</u></em><em><u>thak</u></em></h3>