Answer:
Explanation:
The moment of inertia is the integral of the product of the squared distance by the mass differential. Is the mass equivalent in the rotational motion
a) True. When the moment of inertia is increased, more force is needed to reach acceleration, so it is more difficult to change the angular velocity that depends proportionally on the acceleration
b) True. The moment of inertia is part of the kinetic energy, which is composed of a linear and an angular part. Therefore, when applying the energy conservation theorem, the potential energy is transformed into kinetic energy, the rotational part increases with the moment of inertia, so there is less energy left for the linear part and consequently it falls slower
c) True. The moment of inertial proportional to the angular acceleration, when the acceleration decreases as well. Therefore, a smaller force can achieve the value of acceleration and the change in angular velocity. Consequently, less force is needed is easier
Nitrogen
oxygen
argon
carbon dioxide
Answer:
F = 84.61 N
Explanation:
As in the figure, since there is no friction so if component of Force applied along the incline is greater than the component of weight along the incline, then the object will move up the incline.
component of Force along the incline = F cos(23° - 15°) = F cos(8°)
component of weight along the incline = 33*g*sin(15°) = 33*9.81*sin(15°)
Equating the above two components of forces will give the minimum Force required.
F cos(8°) = 33*9.81*sin(15°)
F = 33*9.81*sin(15°) / cos(8°) (calculate the value using a scientific calculator)
<u>F = 84.61 N</u>
Answer:
c. limit the scope of the study
Explanation:
i did it.