Answer:
Explanation:
Expression for capillary rise is as follows
h = 2T / ρ g r where T is surface tension , ρ is density of liquid and r is radius of capillary tube.
T = .032 J m⁻²
ρ = .71 g / cm³
= 7100 kg / m³
r = .1 x 10⁻³ m = 10⁻⁴ m
h = 2 x .032 / (7100 x 9.8 x 10⁻⁴ )
h = .0092 m
= 9.2 mm .
Send a more clearer picture...
But I will tell u the system of the Hadley cells---
METEOROLOGY
a large-scale atmospheric convection cell in which air rises at the equator and sinks at medium latitudes, typically about 30° north or south.
Answer:
C. The lowest-energy electron configuration of an atom has the maximum number of unpaired electrons, all of which have the same spin, in degenerate orbitals.
Explanation:
The Hund's rule is used to place the electrons in the orbitals is it states that:
1. Every orbital in a sublevel is singly occupied before any orbital is doubly occupied;
2. All of the electrons in singly occupied orbitals have the same spin.
So, the electrons first seek to fill the orbitals with the same energy (degenerate orbitals) before paring with electrons in a half-filled orbital. Orbitals doubly occupied have greater energy, so the lowest-energy electron configuration of an atom has the maximum number of unpaired electrons, and for the second statement, they have the same spin.
The other alternatives are correct, but they're not observed by the Hund's rule.
B.
Explanation:
iehebrkee keen enensjsb sh sry need to get the points?
Here we apply the Clausius-Clapeyron equation:
ln(P₁/P₂) = ΔH/R x (1/T₂ - 1/T₁)
The normal vapor pressure is 4.24 kPa (P₁)
The boiling point at this pressure is 293 K (P₂)
The heat of vaporization is 39.9 kJ/mol (ΔH)
We need to find the vapor pressure (P₂) at the given temperature 355.3 K (T₂)
ln(4.24/P₂) = 39.9/0.008314 x (1/355.3 - 1/293)
P₂ = 101.2 kPa