Answer:
In an endothermic reaction, the products have more stored chemical energy than the reactants. In an exothermic reaction, the opposite is true. The products have less stored chemical energy than the reactants. The excess energy in the reactants is released to the surroundings
Answer:
The correct option is C.
Explanation:
Nuclear and chemical reactions are two types of reactions that one usually encounter in chemistry. These two reactions differ from each other significantly. For instance, the nuclear reactions usually involve the nucleus of the involving atoms while chemical reactions has to do with the electrons that are located outside of the nucleus of the atoms. Also, it is only chemical reaction that are influenced by factors such as temperature, pressure, catalyst, etc. Such factors does not determine the rate of nuclear reactions.
<u>Answer:</u> The pH and pOH of the solution is 1 and 13 respectively and the solution is acidic in nature.
<u>Explanation:</u>
There are three types of solution: acidic, basic and neutral
To determine the type of solution, we look at the pH values.
- The pH range of acidic solution is 0 to 6.9
- The pH range of basic solution is 7.1 to 14
- The pH of neutral solution is 7.
We are given:
Concentration of HI = 0.100 M
1 mole of HI produces 1 mole of hydrogen ions and 1 mole of iodide ions
To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
![[H^+]=0.100M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.100M)
Putting values in above equation, we get:

To calculate the pOH of the solution, we use the equation:
pH + pOH = 14

Hence, the pH and pOH of the solution is 1 and 13 respectively and the solution is acidic in nature.
The given mass of cobalt chloride hydrate = 2.055 g
A sample of cobalt chloride hydrate was heated to drive off waters of hydration and the anhydrate was weighed.
The mass of anhydrous cobalt chloride = 1.121 g anhydrate.
The mass of water lost during heating = 2.055 g - 1.121 g = 0.934 g
Converting mass of water of hydration present in the hydrate to moles using molar mass:
Mass of water = 0.934 g
Molar mass of water = 18.0 g/mol
Moles of water = 