From the information given in the drawing, it's not possible
to tell whether the displacements are equal, because we
don't know what the vectors represent.
If the vectors are distances, then the displacements are not
equal, because the distance between the start and end points
are not equal.
If the vectors are speeds, then they don't tell us anything about
the distance between the start and end points, so we can't calculate
the displacements.
Answer:
Average speed: 86 km/h
Explanation:
Driving from San Antonio to Houston:
1st. half time: 54km/h
2nd. half time: 118 km/h
Average speed = [tex] \frac{54 \frac{km}{h}+ 118 \frac{km}{h} }{2}=86 \frac{km}{h} [\tex]
Driving way back:
1st. half time: 54km/h
2nd. half time: 118 km/h
Average speed = [tex] \frac{54 \frac{km}{h}+ 118 \frac{km}{h} }{2}=86 \frac{km}{h} [\tex]
As in both routes we have the same average speed, then the average speed for the whole trip is 86 km/h
Assuming the power delivered by the horse does not change, the speed of the cart will decrease.
In fact, the power delivered by the horse is the work done by the horse (W) per unit time (t):

<span>If several bags are added to the cart, the horse must do more work to transport them. Therefore, W in the fraction increases. But if the power P of the horse is constant, then it means that the time t must increase as well. So, the horse will take more time to transport the car, and this means that the speed of the cart has decreased.</span>
They travel like waves. Just throw rock at lake you will see wave. When it bumps to barrier barrier reflects some part of it . Not like a line lika a wave
Answer:
<em>The equivalent resistance of the combination is R/100</em>
Explanation:
<u>Electric Resistance</u>
The electric resistance of a wire is directly proportional to its length. If a wire of resistance R is cut into 10 equal parts, then each part has a resistance of R/10.
Parallel connection of resistances: If R1, R2, R3,...., Rn are connected in parallel, the equivalent resistance is calculated as follows:

If we have 10 wires of resistance R/10 each and connect them in parallel, the equivalent resistance is:

This sum is repeated 10 times. Operating each term:

All the terms have the same denominator, thus:

Taking the reciprocals:

The equivalent resistance of the combination is R/100